-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathvendor_t5.py
248 lines (222 loc) · 9.41 KB
/
vendor_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers import T5ForConditionalGeneration
from transformers.modeling_outputs import (
BaseModelOutput,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
class ModifiedT5ForConditionalGeneration(T5ForConditionalGeneration):
def __init__(self, config, latent_dim, pooling_strategy):
super().__init__(config)
self.latent_dim = latent_dim
self.mu = nn.Linear(config.d_model, latent_dim, bias=False)
self.logvar = nn.Linear(config.d_model, latent_dim, bias=False)
self.embed_size_per_head = config.d_model // config.num_heads
self.memory_projection = nn.Linear(
latent_dim,
config.num_decoder_layers * config.num_heads * self.embed_size_per_head,
bias=False,
)
self.pooling_strategy = pooling_strategy
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
sampled_z=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
z, mu, logvar = None, None, None
if sampled_z is not None:
z = sampled_z
encoder_outputs = BaseModelOutput(
last_hidden_state=None,
hidden_states=None,
attentions=None,
)
elif encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.run_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled = self.pool(encoder_outputs.hidden_states)
z, mu, logvar = self.calculate_latent(pooled)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# hidden_states = encoder_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if (
labels is not None
and decoder_input_ids is None
and decoder_inputs_embeds is None
):
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
if past_key_values is None:
past_key_values = self.build_past(z)
# If decoding with past key value states, only the last tokens
# should be given as an input
if past_key_values is not None and labels is None:
# assert (
# labels is None
# ), "Decoder should not use cached key value states when training."
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_inputs_embeds is not None:
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
# hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(
self.decoder.first_device
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.encoder.first_device)
self.lm_head = self.lm_head.to(self.encoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim ** -0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
# loss_fct = CrossEntropyLoss(ignore_index=-100)
# loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
pass
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
out = Seq2SeqLMOutput(
# loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
out.mu = mu
out.logvar = logvar
out.z = z
return out
def run_encoder(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
return encoder_outputs
def pool(self, x):
# Shape of x - (layer_count, batch_size, seq_length, hidden_size)
x = torch.stack(x[1:])
x = x.transpose(0, 1)
if self.pooling_strategy == "mean":
return x[:, -1, :, :].mean(dim=1)
elif self.pooling_strategy == "max":
return torch.max(x[:, -1, :, :], dim=1)[0] # Pool from last layer.
else:
raise Exception("Wrong pooling strategy!")
def calculate_latent(self, pooled):
mu, logvar = self.mu(pooled), self.logvar(pooled)
z = self.reparameterize(mu, logvar)
return z, mu, logvar
def build_past(self, z):
projection = self.memory_projection(z)
cross_attn = projection.reshape(
self.config.num_decoder_layers,
projection.shape[0],
self.config.num_heads,
1,
self.embed_size_per_head,
)
past_key_values = tuple((ca, ca) for ca in cross_attn)
return past_key_values
def reparameterize(self, mu, logvar):
"""
Reparameterization trick to sample from N(mu, var) from
N(0,1).
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
:return: (Tensor) [B x D]
"""
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mu