-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotter_electricField.py
454 lines (373 loc) · 14.1 KB
/
plotter_electricField.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import pyvista as pv
import holoviews as hv
from holoviews import opts
import os
import sys
from colorama import init, Fore, Style
from datetime import datetime
# Initialize HoloViews with the Bokeh backend
hv.extension("bokeh")
pv.global_theme.allow_empty_mesh = True
# Enable or disable specific visualizations
MATPLOTLIB_2D_STREAM_CONTOUR = False
MATPLOTLIB_2D_QUIVER = False
MATPLOTLIB_2D_ELECTRIC_CONTOUR = False
MATPLOTLIB_2D_POTENTIAL_CONTOUR = False
MATPLOTLIB_3D_SURFACE = True
PLOTLY_3D_SURFACE = False
MAYAVI_VECTOR_FIELD = False
PYVISTA_STREAMLINES = False
HOLOVIEWS_QUAD_MESH = False
# Plot parameters
PLOT_CONFIG = {
# Resolution of the saved plots (dots per inch)
"save-dpi": 300,
"show-dpi": 80,
"font_size": 12, # Base font size for plot text
"legend_font_size": 10, # Font size for legend text
"tick_label_size": 10, # Font size for axis tick labels
# Size of the figure in inches (width, height)
"figure_size": (12, 10),
"colorbar_pad": 0.1, # Padding between plots and colorbars
# Folder to save plots
"output_folder": os.path.join("plots", "EField_Plots"),
"show_plots": True, # Set to True to display plots on screen after saving
}
# Physical and plot constants
PHYSICS_PARAMS = {
"B0": 1.0, # Magnetic field strength (T)
"r0": 1.0, # Reference radius (m)
"Phi0": 1.0, # Reference electrostatic potential (V)
"kappa": 1.0, # Temperature gradient parameter
"r_star": 2.0, # Characteristic radius for temperature profile (m)
}
delta_star = PHYSICS_PARAMS["r0"] / PHYSICS_PARAMS["r_star"]
def create_directory(path):
"""Create a directory if it doesn't exist."""
try:
os.makedirs(path, exist_ok=True)
print(f"{Fore.GREEN}✔ Created directory: {path}{Style.RESET_ALL}")
except Exception as e:
print(f"{Fore.RED}✘ Error creating directory {{path}}: {e}{Style.RESET_ALL}")
sys.exit(1)
def save_plot(fig, plot_type):
"""Save the plot with a timestamp in the filename and optionally display it."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"electric_field_{plot_type}_{timestamp}.png"
filepath = os.path.join(PLOT_CONFIG["output_folder"], filename)
fig.savefig(filepath, bbox_inches="tight")
print(f"{Fore.GREEN}✔ Plot saved: {filepath}{Style.RESET_ALL}")
if PLOT_CONFIG["show_plots"]:
plt.show()
else:
plt.close(fig)
# Create output folders
create_directory(PLOT_CONFIG["output_folder"])
# Set up high-quality plot parameters
plt.rcParams["figure.dpi"] = PLOT_CONFIG["show-dpi"]
plt.rcParams["savefig.dpi"] = PLOT_CONFIG["save-dpi"]
plt.rcParams["font.size"] = PLOT_CONFIG["font_size"]
plt.rcParams["legend.fontsize"] = PLOT_CONFIG["legend_font_size"]
plt.rcParams["xtick.labelsize"] = PLOT_CONFIG["tick_label_size"]
plt.rcParams["ytick.labelsize"] = PLOT_CONFIG["tick_label_size"]
# Define electric potential and field functions
def Phi(R, Z):
term1 = (
PHYSICS_PARAMS["kappa"]
* PHYSICS_PARAMS["Phi0"]
* (1 - delta_star**2 * (1 - Z**2 / (R**2 + Z**2)))
* np.log(1 / (R**2 + Z**2))
)
term2 = 0.5 * PHYSICS_PARAMS["Phi0"] * (1 - Z**2 / (R**2 + Z**2))
return term1 + term2
def E_R(R, Z):
Phi0 = PHYSICS_PARAMS["Phi0"]
kappa = PHYSICS_PARAMS["kappa"]
delta_star2 = delta_star**2
numerator = (
R
* Phi0
* (
-2 * kappa * R**2
+ 2 * delta_star2 * kappa * (R**2 - Z**2 * np.log(1 / (R**2 + Z**2)))
+ (1 - 2 * kappa) * Z**2
)
)
denominator = (R**2 + Z**2) ** 2
return -numerator / denominator
def E_z(R, Z):
Phi0 = PHYSICS_PARAMS["Phi0"]
kappa = PHYSICS_PARAMS["kappa"]
delta_star2 = delta_star**2
numerator = (
-Z
* Phi0
* (
(2 * kappa + 1) * R**2
- 2 * delta_star2 * kappa * R**2 * (np.log(1 / (R**2 + Z**2)) + 1)
+ 2 * kappa * Z**2
)
)
denominator = (R**2 + Z**2) ** 2
return -numerator / denominator
# Matplotlib 2D Stream and Contour Plot
def matplotlib_2d_stream_contour():
fig, ax = plt.subplots(figsize=(10, 8))
R = np.linspace(0.1, 4, 100)
Z = np.linspace(0.1, 8, 100)
Z, R = np.meshgrid(Z, R) # Swap the order of Z and R
E_R_values = E_R(R, Z)
E_z_values = E_z(R, Z)
E_magnitude = np.sqrt(E_R_values**2 + E_z_values**2)
# Use Z for x-axis and R for y-axis in streamplot and contour
streamplot = ax.streamplot(
Z, R, E_z_values, E_R_values, color=E_magnitude, cmap="viridis", linewidth=1.5
)
potential = Phi(R, Z)
contour = ax.contour(Z, R, potential, levels=20, colors="red", linewidths=0.5)
equipotential_line = plt.Line2D(
[0], [0], color="red", lw=0.5, label="Equipotential Lines"
)
electric_field_line = plt.Line2D(
[0], [0], color="purple", lw=1.5, label="Electric Field Lines"
)
ax.legend(handles=[equipotential_line, electric_field_line], loc="upper right")
plt.colorbar(streamplot.lines, label="Electric field magnitude (V/m)", pad=0.1)
ax.set_title("Electric Field (2D Streamplot) with Equipotential Lines")
ax.set_xlabel("Z (m)") # Change label to Z
ax.set_ylabel("R (m)") # Change label to R
plt.tight_layout()
save_plot(fig, "2D_Stream_Contour_Matplotlib")
# Matplotlib 2D Quiver Plot
def matplotlib_2d_quiver():
fig, ax = plt.subplots(figsize=(10, 8))
# Dense grid for potential color map (rotated)
Z_dense = np.linspace(0.2, 8, 100)
R_dense = np.linspace(0.2, 4, 100)
Z_dense, R_dense = np.meshgrid(Z_dense, R_dense)
potential = Phi(R_dense, Z_dense)
contourf = ax.contourf(
Z_dense, R_dense, potential, levels=50, cmap="coolwarm", alpha=0.6
)
plt.colorbar(contourf, ax=ax, label="Electric Potential (V)")
# Sparse grid for quiver arrows (rotated)
Z_sparse = np.linspace(0.5, 8, 30)
R_sparse = np.linspace(0.5, 4, 30)
Z_sparse, R_sparse = np.meshgrid(Z_sparse, R_sparse)
E_R_values = E_R(R_sparse, Z_sparse)
E_z_values = E_z(R_sparse, Z_sparse)
# Quiver plot for electric field
quiver = ax.quiver(
Z_sparse,
R_sparse,
E_z_values,
E_R_values,
color="black",
angles="xy",
scale_units="xy",
scale=3,
alpha=0.5,
)
# Create a custom legend entry for Electric Potential Contours using a dummy Line2D object
from matplotlib.lines import Line2D
contour_legend = Line2D(
[0],
[0],
color="black",
linestyle="-",
linewidth=0.8,
label="Electric Equipotential Lines",
)
# Set plot title and labels
ax.set_title("Electric Field (2D Quiver Plot) with Electric Potential Color Map")
ax.set_xlabel("Z (m)")
ax.set_ylabel("R (m)")
# Add both entries to the legend
ax.legend(handles=[contour_legend], loc="upper left")
plt.tight_layout()
save_plot(fig, "2D_Quiver_Matplotlib")
def matplotlib_2d_potential_contour():
fig, ax = plt.subplots(figsize=(10, 8))
# Define grid for contour plot (rotated)
Z = np.linspace(0.1, 8, 200)
R = np.linspace(0.1, 4, 200)
Z, R = np.meshgrid(Z, R)
potential = Phi(R, Z)
# Plot filled contours
contourf = ax.contourf(Z, R, potential, levels=50, cmap="viridis", alpha=0.8)
colorbar = plt.colorbar(contourf, ax=ax, label="Electric Potential (V)")
# Overlay contour lines for better visual clarity
contours = ax.contour(Z, R, potential, levels=10, colors="black", linewidths=0.5)
# Add labels for contour lines
ax.clabel(contours, inline=True, fontsize=8, fmt="%.1f V")
# Set plot title and axis labels
ax.set_title("2D Electric Potential Contour Plot", fontsize=14, weight="bold")
ax.set_xlabel("Z (m)", fontsize=12)
ax.set_ylabel("R (m)", fontsize=12)
# Set grid and limits for professional look
ax.grid(visible=True, linestyle="--", color="grey", alpha=0.3)
ax.set_xlim(0.1, 8)
ax.set_ylim(0.1, 4)
# Adjust layout for a clean look
plt.tight_layout()
save_plot(fig, "2D_Potential_Contour_Matplotlib")
def matplotlib_2d_electric_field_contour():
fig, ax = plt.subplots(figsize=(10, 8))
# Define grid for contour plot (rotated)
Z = np.linspace(0.1, 8, 200)
R = np.linspace(0.1, 4, 200)
Z, R = np.meshgrid(Z, R)
# Calculate electric field components and magnitude
E_R_values = E_R(R, Z)
E_z_values = E_z(R, Z)
E_magnitude = np.sqrt(E_R_values**2 + E_z_values**2)
# Plot filled contours for electric field magnitude
contourf = ax.contourf(Z, R, E_magnitude, levels=50, cmap="plasma", alpha=0.8)
colorbar = plt.colorbar(contourf, ax=ax, label="Electric Field Magnitude (V/m)")
# Overlay contour lines for electric field magnitude
contours = ax.contour(Z, R, E_magnitude, levels=10, colors="black", linewidths=0.5)
ax.clabel(contours, inline=True, fontsize=8, fmt="%.1f V/m")
# Set plot title and axis labels
ax.set_title("2D Electric Field Magnitude Contour Plot", fontsize=14, weight="bold")
ax.set_xlabel("Z (m)", fontsize=12)
ax.set_ylabel("R (m)", fontsize=12)
# Set grid and limits for professional look
ax.grid(visible=True, linestyle="--", color="grey", alpha=0.3)
ax.set_xlim(0.1, 8)
ax.set_ylim(0.1, 4)
# Adjust layout for a clean look
plt.tight_layout()
save_plot(fig, "2D_Electric_Field_Contour_Matplotlib")
# Matplotlib 3D Surface Plot
def matplotlib_3d_surface():
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection="3d")
R = np.linspace(0.1, 5, 100)
Z = np.linspace(0.1, 5, 100)
R, Z = np.meshgrid(R, Z)
E_magnitude = np.sqrt(E_R(R, Z) ** 2 + E_z(R, Z) ** 2)
potential = Phi(R, Z)
surf = ax.plot_surface(
R, Z, E_magnitude, cmap="viridis", edgecolor="none", alpha=0.7
)
fig.colorbar(surf, ax=ax, label="Electric field magnitude (V/m)", pad=0.1)
ax.contour(
R,
Z,
potential,
levels=15,
offset=E_magnitude.min(),
cmap="cool",
linestyles="dashed",
)
ax.set_xlabel("R (m)")
ax.set_ylabel("Z (m)")
ax.set_zlabel("Electric Field Magnitude (V/m)")
ax.set_title(
"Electric Field Magnitude (3D Surface Plot) with Equipotential Contours"
)
plt.tight_layout()
save_plot(fig, "3D_Surface_Matplotlib")
# Plotly Interactive 3D Surface Plot
def plotly_3d_surface():
R = np.linspace(0.1, 5, 100)
Z = np.linspace(0.1, 5, 100)
R, Z = np.meshgrid(R, Z)
E_magnitude = np.sqrt(E_R(R, Z) ** 2 + E_z(R, Z) ** 2)
fig = go.Figure(data=[go.Surface(z=E_magnitude, x=R, y=Z, colorscale="Viridis")])
fig.update_layout(
title="Electric Field Magnitude",
scene=dict(
xaxis_title="R (m)",
yaxis_title="Z (m)",
zaxis_title="Field Magnitude (V/m)",
),
)
if isinstance(fig, go.Figure):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"electric_field_3D Surface_Plotly_{timestamp}.png"
filepath = os.path.join(PLOT_CONFIG["output_folder"], filename)
fig.show()
fig.write_image(filepath)
print(f"{Fore.GREEN}✔ Plot saved: {filepath}{Style.RESET_ALL}")
else:
raise ValueError("Invalid plotly plot object provided.")
# PyVista Streamlines
def pyvista_streamlines():
R = np.linspace(-5, 5, 50)
Z = np.linspace(-5, 5, 50)
R, Z = np.meshgrid(R, Z)
E_R_values = E_R(R, Z)
E_z_values = E_z(R, Z)
potential = Phi(R, Z)
grid = pv.StructuredGrid(R, Z, np.zeros_like(R))
grid["E_field"] = np.c_[
E_R_values.ravel(), E_z_values.ravel(), np.zeros_like(E_R_values).ravel()
]
grid["potential"] = potential.ravel()
# Create a source point for the streamlines
source = pv.PolyData([0, 0, 0])
plotter = pv.Plotter()
plotter.add_mesh(
grid.contour(10, scalars="potential"), cmap="coolwarm", line_width=2
)
streamlines = grid.streamlines_from_source(
source, vectors="E_field", max_time=100, integration_direction="both"
)
plotter.add_mesh(streamlines.tube(radius=0.01), color="blue")
plotter.add_mesh(grid.outline(), color="k")
plotter.show()
# Holoviews + Datashader High-Resolution Quiver Plot
def holoviews_vectorfield_plot():
# Increase the resolution for smoother contours and vector fields
R = np.linspace(-5, 5, 100)
Z = np.linspace(-5, 5, 100)
R, Z = np.meshgrid(R, Z)
E_R_values = E_R(R, Z)
E_z_values = E_z(R, Z)
potential_values = Phi(R, Z)
# Prepare vector data for the plot
vector_data = (R.ravel(), Z.ravel(), E_R_values.ravel(), E_z_values.ravel())
# Create a VectorField plot with adjusted scaling and no colorbar
vector_field = hv.VectorField(vector_data).opts(
magnitude="Magnitude",
color="Magnitude",
cmap="Viridis",
width=600,
height=600,
scale=0.5,
colorbar=False,
)
# Manually set contour levels
contour_levels = np.linspace(potential_values.min(), potential_values.max(), 20)
# Create a contour plot for the potential with enhanced lines and no labels
contour = hv.operation.contours(
hv.Image((R[0], Z[:, 0], potential_values)), levels=contour_levels
).opts(cmap="Blues", line_width=2, alpha=0.8, colorbar=False, show_legend=False)
# Overlay VectorField and Contour
plot = vector_field * contour
return plot
# Main function to generate plots
def main():
if MATPLOTLIB_2D_STREAM_CONTOUR:
matplotlib_2d_stream_contour()
if MATPLOTLIB_2D_QUIVER:
matplotlib_2d_quiver()
if MATPLOTLIB_3D_SURFACE:
matplotlib_3d_surface()
if MATPLOTLIB_2D_POTENTIAL_CONTOUR:
matplotlib_2d_potential_contour()
if MATPLOTLIB_2D_ELECTRIC_CONTOUR:
matplotlib_2d_electric_field_contour()
if PLOTLY_3D_SURFACE:
plotly_3d_surface()
if PYVISTA_STREAMLINES:
pyvista_streamlines()
if HOLOVIEWS_QUAD_MESH:
plot = holoviews_vectorfield_plot()
hv.save(plot, "plots/quiver_contour_plot.html", backend="bokeh")
if __name__ == "__main__":
main()