-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
234 lines (207 loc) · 8.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from utils import detector_utils as detector_utils
from libs.pconv_layer import PConv2D
import cv2
import tensorflow as tf
import datetime
import argparse
import numpy as np
import keras
thresh = 0.9
moving_num = 3
m_input_size = 256
detection_graph, sess = detector_utils.load_inference_graph()
print("model loading...")
model_hand = keras.models.load_model('model/model_hand.h5', compile=False)
_ = model_hand.predict(np.zeros((1,96,96,3)))
model_partial = keras.models.load_model('model/model_partial.h5', compile=False, custom_objects={'PConv2D': PConv2D})
_ = model_partial.predict([np.zeros((1,m_input_size,m_input_size,3)), np.zeros((1,m_input_size,m_input_size,3))])
flag = False
start_flag = False
status = "none"
matrix = []
predict_num = 0
result = np.zeros((1,3))
def hand_classfier(num_hands_detect, score_thresh, scores, boxes, im_width, im_height, image_np):
global status, predict_num, result, matrix, flag
if (scores[0] > score_thresh):
(left, right, top, bottom) = (boxes[0][1] * im_width, boxes[0][3] * im_width,
boxes[0][0] * im_height, boxes[0][2] * im_height)
p1 = (int(left), int(top))
p2 = (int(right), int(bottom))
# hand classfier
img = cv2.cvtColor(image_np[int(top):int(bottom), int(left):int(right)], cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (96, 96)) / 255
score = model_hand.predict(np.expand_dims(img, axis=0))
result += score
predict_num += 1
#update
if predict_num == moving_num:
if np.argmax(result) == 1:
status = "pointer"
if np.max(result)/moving_num < thresh:
status = "anomaly"
if start_flag == False:
status = "anomaly"
elif np.argmax(result) == 2:
status = "goo"
if np.max(result)/moving_num < thresh:
status = "anomaly"
if start_flag == False:
status = "anomaly"
else:
status = "anomaly"
result *= 0
predict_num = 0
# hand draw
if status == "pointer":#"pointer"
cv2.rectangle(image_np, p1, p2, (77, 77, 255), 3, 1)
elif status == "goo":#"magic"
cv2.rectangle(image_np, p1, p2, (255, 241, 144), 3, 1)
else: #normal
cv2.rectangle(image_np, p1, p2, (77, 255, 9), 3, 1)
#pointer or not
if status == "pointer":
flag = True
matrix.append([int(left), int(top)])
# magic or not
if flag == True and status == "goo":
# Mask
img = np.zeros(image_np.shape, np.uint8)
xy = np.array(matrix)
p1_ = (int(np.min(xy[:,0])), int(np.min(xy[:,1])))
p2_ = (int(np.max(xy[:,0])), int(np.max(xy[:,1])))
cv2.rectangle(img, p1_, p2_, (1, 1, 1), thickness=-1)
img = cv2.resize(img, (m_input_size, m_input_size))
mask = 1-img
# Image + mask
img = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (m_input_size, m_input_size)) / 255
img[mask==0] = 1
predict_img = model_partial.predict([np.expand_dims(img, axis=0), np.expand_dims(mask, axis=0)])
output = cv2.resize(predict_img[0], (image_np.shape[0], image_np.shape[1]))
image_np = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
# hand draw
if status == "pointer":
cv2.rectangle(image_np, p1, p2, (77, 77, 255), 3, 1)
elif status == "magic":
cv2.rectangle(image_np, p1, p2, (255, 241, 144), 3, 1)
else: #normal
cv2.rectangle(image_np, p1, p2, (77, 255, 9), 3, 1)
# pointer draw
if flag == True and not status == "goo":
if len(matrix) > 2:
xy = np.array(matrix)
p1 = (int(np.min(xy[:,0])), int(np.min(xy[:,1])))
p2 = (int(np.max(xy[:,0])), int(np.max(xy[:,1])))
cv2.rectangle(image_np, p1, p2, (255, 77, 77), 3, 1)
return image_np
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-sth',
'--scorethreshold',
dest='score_thresh',
type=float,
default=0.6,#0.2
help='Score threshold for displaying bounding boxes')
parser.add_argument(
'-fps',
'--fps',
dest='fps',
type=int,
default=1,
help='Show FPS on detection/display visualization')
parser.add_argument(
'-src',
'--source',
dest='video_source',
default=0,
help='Device index of the camera.')
parser.add_argument(
'-wd',
'--width',
dest='width',
type=int,
default=352,
help='Width of the frames in the video stream.')
parser.add_argument(
'-ht',
'--height',
dest='height',
type=int,
default=288,
help='Height of the frames in the video stream.')
parser.add_argument(
'-ds',
'--display',
dest='display',
type=int,
default=1,
help='Display the detected images using OpenCV. This reduces FPS')
parser.add_argument(
'-num-w',
'--num-workers',
dest='num_workers',
type=int,
default=4,
help='Number of workers.')
parser.add_argument(
'-q-size',
'--queue-size',
dest='queue_size',
type=int,
default=5,
help='Size of the queue.')
args = parser.parse_args()
cap = cv2.VideoCapture(args.video_source)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, args.width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, args.height)
num_frames = 0
im_width, im_height = (m_input_size, m_input_size)#(cap.get(3), cap.get(4))
# max number of hands we want to detect/track
num_hands_detect = 2
cv2.namedWindow('Single-Threaded Detection', cv2.WINDOW_NORMAL)
while True:
start_time = datetime.datetime.now()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
ret, image_np = cap.read()
image_np = image_np[16:272, 48:304]
# image_np = cv2.flip(image_np, 1)
try:
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
except:
print("Error converting to RGB")
# Actual detection. Variable boxes contains the bounding box cordinates for hands detected,
# while scores contains the confidence for each of these boxes.
# Hint: If len(boxes) > 1 , you may assume you have found atleast one hand (within your score threshold)
boxes, scores = detector_utils.detect_objects(image_np,
detection_graph, sess)
# draw bounding boxes on frame
image_np = hand_classfier(num_hands_detect, args.score_thresh,
scores, boxes, im_width, im_height,
image_np)
# Calculate Frames per second (FPS)
#num_frames += 1
elapsed_time = (datetime.datetime.now() - start_time).total_seconds()
fps = 1 / elapsed_time
if (args.display > 0):
# Display FPS on frame
if (args.fps > 0):
detector_utils.draw_fps_on_image("FPS : " + str(int(fps)),
image_np)
cv2.imshow('Single-Threaded Detection',
cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR))
key = cv2.waitKey(25)&0xFF
if key == ord("q"):
cv2.destroyAllWindows()
break
if key == ord("r"):
flag = False
start_flag = False
status = "none"
matrix = []
if key == ord("s"):
start_flag = True
else:
print("frames processed: ", num_frames, "elapsed time: ",
elapsed_time, "fps: ", str(int(fps)))