-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathloss_functions.py
187 lines (154 loc) · 7.06 KB
/
loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import tensorflow as tf
import keras.backend as K
from keras.losses import binary_crossentropy, BinaryCrossentropy
beta = 0.25
alpha = 0.25
gamma = 2
epsilon = 1e-5
smooth = 1
class Semantic_loss_functions(object):
def __init__(self):
print("semantic loss functions initialized")
def dice_coef(self, y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + K.epsilon()) / (
K.sum(y_true_f) + K.sum(y_pred_f) + K.epsilon())
def sensitivity(self, y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
return true_positives / (possible_positives + K.epsilon())
def specificity(self, y_true, y_pred):
true_negatives = K.sum(
K.round(K.clip((1 - y_true) * (1 - y_pred), 0, 1)))
possible_negatives = K.sum(K.round(K.clip(1 - y_true, 0, 1)))
return true_negatives / (possible_negatives + K.epsilon())
def convert_to_logits(self, y_pred):
y_pred = tf.clip_by_value(y_pred, tf.keras.backend.epsilon(),
1 - tf.keras.backend.epsilon())
return tf.math.log(y_pred / (1 - y_pred))
def weighted_cross_entropyloss(self, y_true, y_pred):
y_pred = self.convert_to_logits(y_pred)
pos_weight = beta / (1 - beta)
loss = tf.nn.weighted_cross_entropy_with_logits(logits=y_pred,
targets=y_true,
pos_weight=pos_weight)
return tf.reduce_mean(loss)
def focal_loss_with_logits(self, logits, targets, alpha, gamma, y_pred):
weight_a = alpha * (1 - y_pred) ** gamma * targets
weight_b = (1 - alpha) * y_pred ** gamma * (1 - targets)
return (tf.math.log1p(tf.exp(-tf.abs(logits))) + tf.nn.relu(
-logits)) * (weight_a + weight_b) + logits * weight_b
def focal_loss(self, y_true, y_pred):
y_pred = tf.clip_by_value(y_pred, tf.keras.backend.epsilon(),
1 - tf.keras.backend.epsilon())
logits = tf.math.log(y_pred / (1 - y_pred))
loss = self.focal_loss_with_logits(logits=logits, targets=y_true,
alpha=alpha, gamma=gamma, y_pred=y_pred)
return tf.reduce_mean(loss)
def depth_softmax(self, matrix):
sigmoid = lambda x: 1 / (1 + K.exp(-x))
sigmoided_matrix = sigmoid(matrix)
softmax_matrix = sigmoided_matrix / K.sum(sigmoided_matrix, axis=0)
return softmax_matrix
def generalized_dice_coefficient(self, y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
score = (2. * intersection + smooth) / (
K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
return score
def dice_loss(self, y_true, y_pred):
loss = 1 - self.generalized_dice_coefficient(y_true, y_pred)
return loss
def bce_dice_loss(self, y_true, y_pred):
loss = binary_crossentropy(y_true, y_pred) + \
self.dice_loss(y_true, y_pred)
return loss / 2.0
def confusion(self, y_true, y_pred):
smooth = 1
y_pred_pos = K.clip(y_pred, 0, 1)
y_pred_neg = 1 - y_pred_pos
y_pos = K.clip(y_true, 0, 1)
y_neg = 1 - y_pos
tp = K.sum(y_pos * y_pred_pos)
fp = K.sum(y_neg * y_pred_pos)
fn = K.sum(y_pos * y_pred_neg)
prec = (tp + smooth) / (tp + fp + smooth)
recall = (tp + smooth) / (tp + fn + smooth)
return prec, recall
def true_positive(self, y_true, y_pred):
smooth = 1
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pos = K.round(K.clip(y_true, 0, 1))
tp = (K.sum(y_pos * y_pred_pos) + smooth) / (K.sum(y_pos) + smooth)
return tp
def true_negative(self, y_true, y_pred):
smooth = 1
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K.round(K.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tn = (K.sum(y_neg * y_pred_neg) + smooth) / (K.sum(y_neg) + smooth)
return tn
def tversky_index(self, y_true, y_pred):
y_true_pos = K.flatten(y_true)
y_pred_pos = K.flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos)
false_neg = K.sum(y_true_pos * (1 - y_pred_pos))
false_pos = K.sum((1 - y_true_pos) * y_pred_pos)
alpha = 0.7
return (true_pos + smooth) / (true_pos + alpha * false_neg + (
1 - alpha) * false_pos + smooth)
def tversky_loss(self, y_true, y_pred):
return 1 - self.tversky_index(y_true, y_pred)
def focal_tversky(self, y_true, y_pred):
pt_1 = self.tversky_index(y_true, y_pred)
gamma = 0.75
return K.pow((1 - pt_1), gamma)
def log_cosh_dice_loss(self, y_true, y_pred):
x = self.dice_loss(y_true, y_pred)
return tf.math.log((tf.exp(x) + tf.exp(-x)) / 2.0)
def jacard_similarity(self, y_true, y_pred):
"""
Intersection-Over-Union (IoU), also known as the Jaccard Index
"""
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
union = K.sum((y_true_f + y_pred_f) - (y_true_f * y_pred_f))
return intersection / union
def jacard_loss(self, y_true, y_pred):
"""
Intersection-Over-Union (IoU), also known as the Jaccard loss
"""
return 1 - self.jacard_similarity(y_true, y_pred)
def ssim_loss(self, y_true, y_pred):
"""
Structural Similarity Index (SSIM) loss
"""
return 1 - tf.image.ssim(y_true, y_pred, max_val=1)
def unet3p_hybrid_loss(self, y_true, y_pred):
"""
Hybrid loss proposed in UNET 3+ (https://arxiv.org/ftp/arxiv/papers/2004/2004.08790.pdf)
Hybrid loss for segmentation in three-level hierarchy – pixel, patch and map-level,
which is able to capture both large-scale and fine structures with clear boundaries.
"""
focal_loss = self.focal_loss(y_true, y_pred)
ms_ssim_loss = self.ssim_loss(y_true, y_pred)
jacard_loss = self.jacard_loss(y_true, y_pred)
return focal_loss + ms_ssim_loss + jacard_loss
def basnet_hybrid_loss(self, y_true, y_pred):
"""
Hybrid loss proposed in BASNET (https://arxiv.org/pdf/2101.04704.pdf)
The hybrid loss is a combination of the binary cross entropy, structural similarity
and intersection-over-union losses, which guide the network to learn
three-level (i.e., pixel-, patch- and map- level) hierarchy representations.
"""
bce_loss = BinaryCrossentropy(from_logits=False)
bce_loss = bce_loss(y_true, y_pred)
ms_ssim_loss = self.ssim_loss(y_true, y_pred)
jacard_loss = self.jacard_loss(y_true, y_pred)
return bce_loss + ms_ssim_loss + jacard_loss