forked from eloimoliner/denoising-historical-recordings
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_loader.py
488 lines (392 loc) · 18.8 KB
/
dataset_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import ast
import tensorflow as tf
import random
import os
import numpy as np
from scipy.fft import fft, ifft
import soundfile as sf
import math
import pandas as pd
import scipy as sp
import glob
from tqdm import tqdm
#generator function. It reads the csv file with pandas and loads the largest audio segments from each recording. If extend=False, it will only read the segments with length>length_seg, trim them and yield them with no further processing. Otherwise, if the segment length is inferior, it will extend the length using concatenative synthesis.
def __noise_sample_generator(info_file,fs, length_seq, split):
head=os.path.split(info_file)[0]
load_data=pd.read_csv(info_file)
#split= train, validation, test
load_data_split=load_data.loc[load_data["split"]==split]
load_data_split=load_data_split.reset_index(drop=True)
while True:
r = list(range(len(load_data_split)))
if split!="test":
random.shuffle(r)
for i in r:
segments=ast.literal_eval(load_data_split.loc[i,"segments"])
if split=="test":
loaded_data, Fs=sf.read(os.path.join(head,load_data_split["recording"].loc[i],load_data_split["largest_segment"].loc[i]))
else:
num=np.random.randint(0,len(segments))
loaded_data, Fs=sf.read(os.path.join(head,load_data_split["recording"].loc[i],segments[num]))
assert(fs==Fs, "wrong sampling rate")
yield __extend_sample_by_repeating(loaded_data,fs,length_seq)
def __extend_sample_by_repeating(data, fs,seq_len):
rpm=78
target_samp=seq_len
large_data=np.zeros(shape=(target_samp,2))
if len(data)>=target_samp:
large_data=data[0:target_samp]
return large_data
bls=(1000*44100)/1000 #hardcoded
window=np.stack((np.hanning(bls) ,np.hanning(bls)), axis=1)
window_left=window[0:int(bls/2),:]
window_right=window[int(bls/2)::,:]
bls=int(bls/2)
rps=rpm/60
period=1/rps
period_sam=int(period*fs)
overhead=len(data)%period_sam
if(overhead>bls):
complete_periods=(len(data)//period_sam)*period_sam
else:
complete_periods=(len(data)//period_sam -1)*period_sam
a=np.multiply(data[0:bls], window_left)
b=np.multiply(data[complete_periods:complete_periods+bls], window_right)
c_1=np.concatenate((data[0:complete_periods,:],b))
c_2=np.concatenate((a,data[bls:complete_periods,:],b))
c_3=np.concatenate((a,data[bls::,:]))
large_data[0:complete_periods+bls,:]=c_1
pointer=complete_periods
not_finished=True
while (not_finished):
if target_samp>pointer+complete_periods+bls:
large_data[pointer:pointer+complete_periods+bls] +=c_2
pointer+=complete_periods
else:
large_data[pointer::]+=c_3[0:(target_samp-pointer)]
#finish
not_finished=False
return large_data
def generate_real_recordings_data(path_recordings, fs=44100, seg_len_s=15, stereo=False):
records_info=os.path.join(path_recordings,"audio_files.txt")
num_lines = sum(1 for line in open(records_info))
f = open(records_info,"r")
#load data record files
print("Loading record files")
records=[]
seg_len=fs*seg_len_s
pointer=int(fs*5) #starting at second 5 by default
for i in tqdm(range(num_lines)):
audio=f.readline()
audio=audio[:-1]
data, fs=sf.read(os.path.join(path_recordings,audio))
if len(data.shape)>1 and not(stereo):
data=np.mean(data,axis=1)
#elif stereo and len(data.shape)==1:
# data=np.stack((data, data), axis=1)
#normalize
data=data/np.max(np.abs(data))
segment=data[pointer:pointer+seg_len]
records.append(segment.astype("float32"))
return records
def generate_paired_data_test_formal(path_pianos, path_noises, noise_amount="low_snr",num_samples=-1, fs=44100, seg_len_s=5 , extend=True, stereo=False, prenoise=False):
print(num_samples)
segments_clean=[]
segments_noisy=[]
seg_len=fs*seg_len_s
noises_info=os.path.join(path_noises,"info.csv")
np.random.seed(42)
if noise_amount=="low_snr":
SNRs=np.random.uniform(2,6,num_samples)
elif noise_amount=="mid_snr":
SNRs=np.random.uniform(6,12,num_samples)
scales=np.random.uniform(-4,0,num_samples)
#SNRs=[2,6,12] #HARDCODED!!!!
i=0
print(path_pianos[0])
print(seg_len)
train_samples=glob.glob(os.path.join(path_pianos[0],"*.wav"))
train_samples=sorted(train_samples)
if prenoise:
noise_generator=__noise_sample_generator(noises_info,fs, seg_len+fs, extend, "test") #Adds 1s of silence add the begiing, longer noise
else:
noise_generator=__noise_sample_generator(noises_info,fs, seg_len, extend, "test") #this will take care of everything
#load data clean files
for file in tqdm(train_samples): #add [1:5] for testing
data_clean, samplerate = sf.read(file)
if samplerate!=fs:
print("!!!!WRONG SAMPLE RATe!!!")
#Stereo to mono
if len(data_clean.shape)>1 and not(stereo):
data_clean=np.mean(data_clean,axis=1)
#elif stereo and len(data_clean.shape)==1:
# data_clean=np.stack((data_clean, data_clean), axis=1)
#normalize
data_clean=data_clean/np.max(np.abs(data_clean))
#data_clean_loaded.append(data_clean)
#framify data clean files
#framify arguments: seg_len, hop_size
hop_size=int(seg_len)# no overlap
num_frames=np.floor(len(data_clean)/hop_size - seg_len/hop_size +1)
print(num_frames)
if num_frames==0:
data_clean=np.concatenate((data_clean, np.zeros(shape=(int(2*seg_len-len(data_clean)),))), axis=0)
num_frames=1
data_not_finished=True
pointer=0
while(data_not_finished):
if i>=num_samples:
break
segment=data_clean[pointer:pointer+seg_len]
pointer=pointer+hop_size
if pointer+seg_len>len(data_clean):
data_not_finished=False
segment=segment.astype('float32')
#SNRs=np.random.uniform(2,20)
snr=SNRs[i]
scale=scales[i]
#load noise signal
data_noise= next(noise_generator)
data_noise=np.mean(data_noise,axis=1)
#normalize
data_noise=data_noise/np.max(np.abs(data_noise))
new_noise=data_noise #if more processing needed, add here
#load clean data
#configure sizes
power_clean=np.var(segment)
#estimate noise power
if prenoise:
power_noise=np.var(new_noise[fs::])
else:
power_noise=np.var(new_noise)
snr = 10.0**(snr/10.0)
#sum both signals according to snr
if prenoise:
segment=np.concatenate((np.zeros(shape=(fs,)),segment),axis=0) #add one second of silence
summed=segment+np.sqrt(power_clean/(snr*power_noise))*new_noise #not sure if this is correct, maybe revisit later!!
summed=summed.astype('float32')
#yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
summed=10.0**(scale/10.0) *summed
segment=10.0**(scale/10.0) *segment
segments_noisy.append(summed.astype('float32'))
segments_clean.append(segment.astype('float32'))
i=i+1
return segments_noisy, segments_clean
def generate_test_data(path_music, path_noises,num_samples=-1, fs=44100, seg_len_s=5):
segments_clean=[]
segments_noisy=[]
seg_len=fs*seg_len_s
noises_info=os.path.join(path_noises,"info.csv")
SNRs=[2,6,12] #HARDCODED!!!!
for path in path_music:
print(path)
train_samples=glob.glob(os.path.join(path,"*.wav"))
train_samples=sorted(train_samples)
noise_generator=__noise_sample_generator(noises_info,fs, seg_len, "test") #this will take care of everything
#load data clean files
jj=0
for file in tqdm(train_samples): #add [1:5] for testing
data_clean, samplerate = sf.read(file)
if samplerate!=fs:
print("!!!!WRONG SAMPLE RATe!!!")
#Stereo to mono
if len(data_clean.shape)>1:
data_clean=np.mean(data_clean,axis=1)
#normalize
data_clean=data_clean/np.max(np.abs(data_clean))
#data_clean_loaded.append(data_clean)
#framify data clean files
#framify arguments: seg_len, hop_size
hop_size=int(seg_len)# no overlap
num_frames=np.floor(len(data_clean)/hop_size - seg_len/hop_size +1)
if num_frames==0:
data_clean=np.concatenate((data_clean, np.zeros(shape=(int(2*seg_len-len(data_clean)),))), axis=0)
num_frames=1
pointer=0
segment=data_clean[pointer:pointer+(seg_len-2*fs)]
segment=segment.astype('float32')
segment=np.concatenate(( np.zeros(shape=(2*fs,)), segment), axis=0) #I hope its ok
#segments_clean.append(segment)
for snr in SNRs:
#load noise signal
data_noise= next(noise_generator)
data_noise=np.mean(data_noise,axis=1)
#normalize
data_noise=data_noise/np.max(np.abs(data_noise))
new_noise=data_noise #if more processing needed, add here
#load clean data
#configure sizes
#estimate clean signal power
power_clean=np.var(segment)
#estimate noise power
power_noise=np.var(new_noise)
snr = 10.0**(snr/10.0)
#sum both signals according to snr
summed=segment+np.sqrt(power_clean/(snr*power_noise))*new_noise #not sure if this is correct, maybe revisit later!!
summed=summed.astype('float32')
#yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
segments_noisy.append(summed.astype('float32'))
segments_clean.append(segment.astype('float32'))
return segments_noisy, segments_clean
def generate_val_data(path_music, path_noises,split,num_samples=-1, fs=44100, seg_len_s=5):
val_samples=[]
for path in path_music:
val_samples.extend(glob.glob(os.path.join(path,"*.wav")))
#load data clean files
print("Loading clean files")
data_clean_loaded=[]
for ff in tqdm(range(0,len(val_samples))): #add [1:5] for testing
data_clean, samplerate = sf.read(val_samples[ff])
if samplerate!=fs:
print("!!!!WRONG SAMPLE RATe!!!")
#Stereo to mono
if len(data_clean.shape)>1 :
data_clean=np.mean(data_clean,axis=1)
#normalize
data_clean=data_clean/np.max(np.abs(data_clean))
data_clean_loaded.append(data_clean)
del data_clean
#framify data clean files
print("Framifying clean files")
seg_len=fs*seg_len_s
segments_clean=[]
for file in tqdm(data_clean_loaded):
#framify arguments: seg_len, hop_size
hop_size=int(seg_len)# no overlap
num_frames=np.floor(len(file)/hop_size - seg_len/hop_size +1)
pointer=0
for i in range(0,int(num_frames)):
segment=file[pointer:pointer+seg_len]
pointer=pointer+hop_size
segment=segment.astype('float32')
segments_clean.append(segment)
del data_clean_loaded
SNRs=np.random.uniform(2,20,len(segments_clean))
scales=np.random.uniform(-6,4,len(segments_clean))
#noise_shapes=np.random.randint(0,len(noise_samples), len(segments_clean))
noises_info=os.path.join(path_noises,"info.csv")
noise_generator=__noise_sample_generator(noises_info,fs, seg_len, split) #this will take care of everything
#generate noisy segments
#load noise samples using pandas dataframe. Each split (train, val, test) should have its unique csv info file
#noise_samples=glob.glob(os.path.join(path_noises,"*.wav"))
segments_noisy=[]
print("Processing noisy segments")
for i in tqdm(range(0,len(segments_clean))):
#load noise signal
data_noise= next(noise_generator)
#Stereo to mono
data_noise=np.mean(data_noise,axis=1)
#normalize
data_noise=data_noise/np.max(np.abs(data_noise))
new_noise=data_noise #if more processing needed, add here
#load clean data
data_clean=segments_clean[i]
#configure sizes
#estimate clean signal power
power_clean=np.var(data_clean)
#estimate noise power
power_noise=np.var(new_noise)
snr = 10.0**(SNRs[i]/10.0)
#sum both signals according to snr
summed=data_clean+np.sqrt(power_clean/(snr*power_noise))*new_noise #not sure if this is correct, maybe revisit later!!
#the rest is normal
summed=10.0**(scales[i]/10.0) *summed
segments_clean[i]=10.0**(scales[i]/10.0) *segments_clean[i]
segments_noisy.append(summed.astype('float32'))
return segments_noisy, segments_clean
def generator_train(path_music, path_noises,split, fs=44100, seg_len_s=5, extend=True, stereo=False):
train_samples=[]
for path in path_music:
train_samples.extend(glob.glob(os.path.join(path.decode("utf-8") ,"*.wav")))
seg_len=fs*seg_len_s
noises_info=os.path.join(path_noises.decode("utf-8"),"info.csv")
noise_generator=__noise_sample_generator(noises_info,fs, seg_len, split.decode("utf-8")) #this will take care of everything
#load data clean files
while True:
random.shuffle(train_samples)
for file in train_samples:
data, samplerate = sf.read(file)
assert(samplerate==fs, "wrong sampling rate")
data_clean=data
#Stereo to mono
if len(data.shape)>1 :
data_clean=np.mean(data_clean,axis=1)
#normalize
data_clean=data_clean/np.max(np.abs(data_clean))
#framify data clean files
#framify arguments: seg_len, hop_size
hop_size=int(seg_len)
num_frames=np.floor(len(data_clean)/seg_len)
if num_frames==0:
data_clean=np.concatenate((data_clean, np.zeros(shape=(int(2*seg_len-len(data_clean)),))), axis=0)
num_frames=1
pointer=0
data_clean=np.roll(data_clean, np.random.randint(0,seg_len)) #if only one frame, roll it for augmentation
elif num_frames>1:
pointer=np.random.randint(0,hop_size) #initial shifting, graeat for augmentation, better than overlap as we get different frames at each "while" iteration
else:
pointer=0
data_not_finished=True
while(data_not_finished):
segment=data_clean[pointer:pointer+seg_len]
pointer=pointer+hop_size
if pointer+seg_len>len(data_clean):
data_not_finished=False
segment=segment.astype('float32')
SNRs=np.random.uniform(2,20)
scale=np.random.uniform(-6,4)
#load noise signal
data_noise= next(noise_generator)
data_noise=np.mean(data_noise,axis=1)
#normalize
data_noise=data_noise/np.max(np.abs(data_noise))
new_noise=data_noise #if more processing needed, add here
#load clean data
#configure sizes
if stereo:
#estimate clean signal power
power_clean=0.5*np.var(segment[:,0])+0.5*np.var(segment[:,1])
#estimate noise power
power_noise=0.5*np.var(new_noise[:,0])+0.5*np.var(new_noise[:,1])
else:
#estimate clean signal power
power_clean=np.var(segment)
#estimate noise power
power_noise=np.var(new_noise)
snr = 10.0**(SNRs/10.0)
#sum both signals according to snr
summed=segment+np.sqrt(power_clean/(snr*power_noise))*new_noise #not sure if this is correct, maybe revisit later!!
summed=10.0**(scale/10.0) *summed
segment=10.0**(scale/10.0) *segment
summed=summed.astype('float32')
yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
def load_data(buffer_size, path_music_train, path_music_val, path_noises, fs=44100, seg_len_s=5, extend=True, stereo=False) :
print("Generating train dataset")
trainshape=int(fs*seg_len_s)
dataset_train = tf.data.Dataset.from_generator(generator_train,args=(path_music_train, path_noises,"train", fs, seg_len_s, extend, stereo), output_shapes=(tf.TensorShape((trainshape,)),tf.TensorShape((trainshape,))), output_types=(tf.float32, tf.float32) )
print("Generating validation dataset")
segments_noisy, segments_clean=generate_val_data(path_music_val, path_noises,"validation",fs=fs, seg_len_s=seg_len_s)
dataset_val=tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
return dataset_train.shuffle(buffer_size), dataset_val
def load_data_test(buffer_size, path_pianos_test, path_noises, **kwargs):
print("Generating test dataset")
segments_noisy, segments_clean=generate_test_data(path_pianos_test, path_noises, extend=True, **kwargs)
dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
#dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy[1:3], segments_clean[1:3]))
#train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test
def load_data_formal( path_pianos_test, path_noises, **kwargs) :
print("Generating test dataset")
segments_noisy, segments_clean=generate_paired_data_test_formal(path_pianos_test, path_noises, extend=True, **kwargs)
print("segments::")
print(len(segments_noisy))
dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
#dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy[1:3], segments_clean[1:3]))
#train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test
def load_real_test_recordings(buffer_size, path_recordings, **kwargs):
print("Generating real test dataset")
segments_noisy=generate_real_recordings_data(path_recordings, **kwargs)
dataset_test=tf.data.Dataset.from_tensor_slices(segments_noisy)
#train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test