-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_lemma.py
160 lines (129 loc) · 5.09 KB
/
predict_lemma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import json
from pathlib import Path
from transformers import AutoTokenizer
import adapters.composition as ac
from adapters import AdapterConfig, AutoAdapterModel
import torch
from tqdm import trange
from lemma_rules import apply_lemma_rule
def predict(input_data, batch_size):
output = []
for i in trange(0, len(input_data), batch_size):
tokens_list = [el["tokens"] for el in input_data[i : i + batch_size]]
tokenized = tokenizer(
tokens_list,
is_split_into_words=True,
return_tensors="pt",
padding=True,
truncation=True,
).to(model.device)
with torch.no_grad():
preds = model(**tokenized).logits
for index, (pred, tokens) in enumerate(zip(preds, tokens_list)):
prev = None
predicted_labels = []
for word_index, (item, word_id) in enumerate(
zip(pred, tokenized[index].word_ids)
):
if word_id is not None and word_id != prev:
predicted_labels.append(
[
apply_lemma_rule(tokens[word_id], id_to_label[id_])
for id_ in pred[word_index, :]
.argsort(descending=True)[:3]
.tolist()
]
)
prev = word_id
output.append(
[
[token, candidates]
for token, candidates in zip(tokens, predicted_labels)
]
)
return output
def evaluate(predicted_data, ground_truth, batch_size):
hits_at_1 = 0
hits_at_3 = 0
total = 0
for i, sent in enumerate(predicted_data):
for pred, truth in zip(sent, ground_truth[i]["lemmas"]):
if truth in pred[1]:
hits_at_3 += 1
if truth in pred[1][0]:
hits_at_1 += 1
total += 1
print(f"Validation accuracy @ 1 for `{lang}` on lemmatisation: {hits_at_1 / total}")
print(
f"Validation accuracy @ 3: for `{lang}` on lemmatisation: {hits_at_3 / total}"
)
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--lang", type=str, required=True)
parser.add_argument("--submission_dir", type=str, required=True)
parser.add_argument("--adapter_path", type=str, required=True)
parser.add_argument("--tokenizer_name", type=str)
parser.add_argument("--batch_size", type=int, default=128)
return parser.parse_args()
args = parse_arguments()
lang = args.lang
submission_dir = (Path(args.submission_dir) / "lemmatisation").resolve()
submission_dir.mkdir(exist_ok=True, parents=True)
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
Path(args.tokenizer_name).resolve().as_posix(),
local_files_only=True,
)
else:
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
root_adapter_path = Path(args.adapter_path).resolve()
mlm_adapter_path = root_adapter_path / "mlm"
mlm_adapter_config_path = mlm_adapter_path / "adapter_config.json"
mlm_adapter_config = AdapterConfig.load(mlm_adapter_config_path.as_posix())
model = AutoAdapterModel.from_pretrained(
"xlm-roberta-base",
# config=mlm_adapter_config,
)
if args.tokenizer_name:
# stupid workaround to embeddings beings saved to cuda device
emb_path = root_adapter_path / "embeddings"
emb_pt_path = emb_path / "embedding.pt"
emb = torch.load(emb_pt_path.as_posix(), map_location=torch.device("cpu"))
torch.save(emb, emb_pt_path.as_posix())
model.load_embeddings(
emb_path.as_posix(),
"custom_embeddings",
)
model.load_adapter(mlm_adapter_path.as_posix(), config=mlm_adapter_config)
lemmatisation_adapter_path = root_adapter_path / "lemmatisation"
lemmatisation_adapter_config_path = lemmatisation_adapter_path / "adapter_config.json"
lemmatisation_adapter_config = AdapterConfig.load(
lemmatisation_adapter_config_path.as_posix()
)
model.load_adapter(
lemmatisation_adapter_path.as_posix(),
config=lemmatisation_adapter_config,
)
model.active_adapters = ac.Stack("mlm", "lemmatisation")
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
model.to(device)
with open(Path(args.adapter_path) / "lemmatisation_labels.json") as file:
labels = json.loads(file.read())
id_to_label = {int(value): key for key, value in labels.items()}
data_dir = Path("./converted_data").resolve()
with open(data_dir / "lemmatisation" / "valid" / f"{lang}_valid.json") as file:
valid_data = json.loads(file.read())
with open(data_dir / "lemmatisation" / "test" / f"{lang}_test.json") as file:
test_data = json.loads(file.read())
valid_output = predict(valid_data, args.batch_size)
evaluate(valid_output, valid_data, args.batch_size)
test_output = predict(test_data, args.batch_size)
assert len(test_output) == len(test_data)
with open(submission_dir / f"{lang}.json", "w") as file:
file.write(json.dumps(test_output, ensure_ascii=False))