-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_tags.py
188 lines (149 loc) · 6.23 KB
/
predict_tags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
from collections import defaultdict
import json
from pathlib import Path
from transformers import AutoTokenizer
import adapters
from adapters import AdapterConfig, AutoAdapterModel
import torch
from tqdm import trange
import numpy as np
def predict(input_data, pred_batch_size):
tags_output = []
pos_output = []
for i in trange(0, len(input_data), pred_batch_size):
tokens_list = [el["tokens"] for el in input_data[i : i + pred_batch_size]]
tokenized = tokenizer(
tokens_list,
is_split_into_words=True,
return_tensors="pt",
padding=True,
truncation=True,
).to(model.device)
with torch.no_grad():
preds = model(**tokenized).logits
for index, (pred, tokens) in enumerate(zip(preds, tokens_list)):
prev = None
predicted_labels = []
pos_list = []
feats_list = []
for word_index, (item, word_id) in enumerate(
zip(pred, tokenized[index].word_ids)
):
if word_id is not None and word_id != prev:
predicted_labels.append(
id_to_label[pred[word_index, :].argmax().item()]
)
prev = word_id
for label, token in zip(predicted_labels, tokens):
cur_feats = [el.split("=") for el in label.split(";")]
cur_feats = {key: value for key, value in cur_feats}
feats_list.append(cur_feats | {"Token": token})
cur_pos = cur_feats["UPOS"]
pos_list.append(cur_pos)
tags_output.append(feats_list)
pos_output.append(
[[token, cur_pos] for cur_pos, token in zip(pos_list, tokens)]
)
return tags_output, pos_output
def evaluate_pos(input_data, ground_truth):
hits_at_1 = 0
total = 0
for i, sent in enumerate(input_data):
for pred, truth in zip(sent, ground_truth[i]["tags"]):
cur_feats = [el.split("=") for el in truth.split(";")]
cur_feats = {key: value for key, value in cur_feats}
if cur_feats["UPOS"] == pred[1]:
hits_at_1 += 1
total += 1
print(f"Validation POS accuracy @ 1: {hits_at_1 / total}")
def evaluate_tags(input_data, ground_truth):
hits_at_1 = defaultdict(lambda: 0)
total = defaultdict(lambda: 0)
for i, sent in enumerate(input_data):
for pred, truth in zip(sent, ground_truth[i]["tags"]):
cur_feats = [el.split("=") for el in truth.split(";")]
cur_feats = {key: value for key, value in cur_feats}
missing = set(cur_feats) - set(pred)
for key in pred.keys():
if pred[key] == cur_feats.get(key, None):
hits_at_1[key] += 1
total[key] += 1
for key in missing:
total[key] += 1
accuracies = []
for key in total:
accuracies.append(hits_at_1[key] / total[key])
print(f"Validation feats macro-average accuracy @ 1: {np.mean(accuracies)}")
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--lang", type=str, required=True)
parser.add_argument("--submission_dir", type=str, required=True)
parser.add_argument("--adapter_path", type=str, required=True)
parser.add_argument("--tokenizer_name", type=str)
parser.add_argument("--batch_size", type=int, default=128)
return parser.parse_args()
args = parse_arguments()
lang = args.lang
pos_submission_dir = (Path(args.submission_dir) / "pos_tagging").resolve()
pos_submission_dir.mkdir(exist_ok=True, parents=True)
tagging_submission_dir = (Path(args.submission_dir) / "morph_features").resolve()
tagging_submission_dir.mkdir(exist_ok=True, parents=True)
data_path = Path("./converted_data/tagging").resolve()
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
Path(args.tokenizer_name).resolve().as_posix(),
local_files_only=True,
)
else:
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
root_adapter_path = Path(args.adapter_path).resolve()
mlm_adapter_path = root_adapter_path / "mlm"
mlm_adapter_config_path = mlm_adapter_path / "adapter_config.json"
mlm_adapter_config = AdapterConfig.load(mlm_adapter_config_path.as_posix())
model = AutoAdapterModel.from_pretrained(
"xlm-roberta-base",
# config=mlm_adapter_config,
)
if args.tokenizer_name:
# stupid workaround to embeddings beings saved to cuda device
emb_path = root_adapter_path / "embeddings"
emb_pt_path = emb_path / "embedding.pt"
emb = torch.load(emb_pt_path.as_posix(), map_location=torch.device("cpu"))
torch.save(emb, emb_pt_path.as_posix())
model.load_embeddings(
emb_path.as_posix(),
"custom_embeddings",
)
model.load_adapter(mlm_adapter_path.as_posix(), config=mlm_adapter_config)
tagging_adapter_path = root_adapter_path / "tagging"
tagging_adapter_config_path = tagging_adapter_path / "adapter_config.json"
tagging_adapter_config = AdapterConfig.load(tagging_adapter_config_path.as_posix())
model.load_adapter(
tagging_adapter_path.as_posix(),
config=tagging_adapter_config,
)
model.active_adapters = adapters.composition.Stack("mlm", "tagging")
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
model.to(device)
with open(Path(args.adapter_path) / "tagging_labels.json") as file:
labels = json.loads(file.read())
id_to_label = {int(value): key for key, value in labels.items()}
with open(data_path / "valid" / f"{lang}_valid.json") as file:
valid_data = json.loads(file.read())
with open(data_path / "test" / f"{lang}_test.json") as file:
test_data = json.loads(file.read())
batch_size = args.batch_size
valid_tags, valid_pos = predict(valid_data, batch_size)
evaluate_pos(valid_pos, valid_data)
evaluate_tags(valid_tags, valid_data)
test_tags, test_pos = predict(test_data, batch_size)
with open(pos_submission_dir / f"{lang}.json", "w") as file:
file.write(json.dumps(test_pos, ensure_ascii=False))
with open(tagging_submission_dir / f"{lang}.json", "w") as file:
file.write(json.dumps(test_tags, ensure_ascii=False))