-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tokenizer.py
42 lines (27 loc) · 1.13 KB
/
train_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import argparse
from pathlib import Path
from transformers import AutoTokenizer
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--lang", type=str, required=True)
parser.add_argument("--vocab_size", type=int, default=3_000)
parser.add_argument("--tokenizers_dir", type=str, default="./custom_tokenizers")
return parser.parse_args()
args = parse_arguments()
lang = args.lang
vocab_size = args.vocab_size
tokenizers_dir = Path(args.tokenizers_dir).resolve()
tokenizers_dir.mkdir(exist_ok=True, parents=True)
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
with open(f"./converted_data/mlm/train/{lang}_train.txt") as file:
train_sentences = file.readlines()
with open(f"./converted_data/mlm/valid/{lang}_valid.txt") as file:
valid_sentences = file.readlines()
sentences = train_sentences + valid_sentences
def data_iterator():
for sentence in sentences:
yield sentence
custom_tokenizer = tokenizer.train_new_from_iterator(
data_iterator(), vocab_size=vocab_size
)
custom_tokenizer.save_pretrained(tokenizers_dir / f"{lang}_tokenizer")