-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata.py
194 lines (161 loc) · 8.01 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torchvision
import torchvision.transforms as transforms
import torch
import random
import os
from PIL import Image
def _dataset_picker(args, clean_trainset):
trainset = clean_trainset
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.bs, shuffle=True, num_workers=2)
return trainset, trainloader
def _baseset_picker(args):
if args.net in ["ViT_pt",'mlpmixer_pt','MLPMixer_pt']:
size = 224
else:
size = 32
if args.baseset == 'CIFAR10':
''' best transforms - figure out later (LF 06/11/21)
'''
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.Resize(size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
'''
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
'''
clean_trainset = torchvision.datasets.CIFAR10(
root='~/data', train=True, download=True, transform=transform_train)
#
# clean_trainset, _ = torch.utils.data.random_split(clean_trainset,
# [100, int(len(clean_trainset) - 100)],
# generator=torch.Generator().manual_seed(42), )
clean_trainloader = torch.utils.data.DataLoader(
clean_trainset, batch_size=args.bs, shuffle=False, num_workers=4)
elif args.baseset == 'CIFAR100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.Resize(size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071598291397095, 0.4866936206817627,
0.44120192527770996), (0.2673342823982239, 0.2564384639263153,
0.2761504650115967)),
])
clean_trainset = torchvision.datasets.CIFAR100(root='~/data', train=True,
download=True, transform=transform_train)
# LIAM CHANGED TO SHUFFLE=FALSE
clean_trainloader = torch.utils.data.DataLoader(
clean_trainset, batch_size=128, shuffle=False, num_workers=2)
elif args.baseset == 'SVHN':
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614))
])
base_trainset = torchvision.datasets.SVHN(root='~/data', split='train',
download=True, transform=transform_train)
# LIAM CHANGED TO SHUFFLE=FALSE
clean_trainset = _CIFAR100_label_noise(base_trainset, args.label_path)
clean_trainloader = torch.utils.data.DataLoader(
clean_trainset, batch_size=128, shuffle=False, num_workers=2)
elif args.baseset == 'CIFAR_load':
old_clean_trainset = torchvision.datasets.CIFAR10(
root='~/data', train=True, download=True, transform=None)
class _CIFAR_load(torch.utils.data.Dataset):
def __init__(self, root, baseset, dummy_root='~/data', split='train', download=False, **kwargs):
self.baseset = baseset
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010))])
self.transform = transform_train
self.samples = os.listdir(root)
self.root = root
def __len__(self):
return len(self.baseset)
def __getitem__(self, idx):
true_index = int(self.samples[idx].split('.')[0])
true_img, label = self.baseset[true_index]
return self.transform(Image.open(os.path.join(self.root,
self.samples[idx]))), label
clean_trainset = _CIFAR_load(args.load_data, old_clean_trainset)
clean_trainloader = torch.utils.data.DataLoader(
clean_trainset, batch_size=128, shuffle=False, num_workers=2)
else:
raise NotImplementedError
transform_test = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
testset = torchvision.datasets.CIFAR10(
root='~/data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
return clean_trainset, clean_trainloader, testset, testloader
def get_data(args):
print('==> Preparing data..')
clean_trainset, clean_trainloader, testset, testloader = _baseset_picker(args)
trainset, trainloader = _dataset_picker(args, clean_trainset)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
return trainloader, testloader
def get_plane(img1, img2, img3):
''' Calculate the plane (basis vecs) spanned by 3 images
Input: 3 image tensors of the same size
Output: two (orthogonal) basis vectors for the plane spanned by them, and
the second vector (before being made orthogonal)
'''
a = img2 - img1
b = img3 - img1
a_norm = torch.dot(a.flatten(), a.flatten()).sqrt()
a = a / a_norm
first_coef = torch.dot(a.flatten(), b.flatten())
#first_coef = torch.dot(a.flatten(), b.flatten()) / torch.dot(a.flatten(), a.flatten())
b_orthog = b - first_coef * a
b_orthog_norm = torch.dot(b_orthog.flatten(), b_orthog.flatten()).sqrt()
b_orthog = b_orthog / b_orthog_norm
second_coef = torch.dot(b.flatten(), b_orthog.flatten())
#second_coef = torch.dot(b_orthog.flatten(), b.flatten()) / torch.dot(b_orthog.flatten(), b_orthog.flatten())
coords = [[0,0], [a_norm,0], [first_coef, second_coef]]
return a, b_orthog, b, coords
class plane_dataset(torch.utils.data.Dataset):
def __init__(self, base_img, vec1, vec2, coords, resolution=0.2,
range_l=.1, range_r=.1):
self.base_img = base_img
self.vec1 = vec1
self.vec2 = vec2
self.coords = coords
self.resolution = resolution
x_bounds = [coord[0] for coord in coords]
y_bounds = [coord[1] for coord in coords]
self.bound1 = [torch.min(torch.tensor(x_bounds)), torch.max(torch.tensor(x_bounds))]
self.bound2 = [torch.min(torch.tensor(y_bounds)), torch.max(torch.tensor(y_bounds))]
len1 = self.bound1[-1] - self.bound1[0]
len2 = self.bound2[-1] - self.bound2[0]
#list1 = torch.linspace(self.bound1[0] - 0.1*len1, self.bound1[1] + 0.1*len1, int(resolution))
#list2 = torch.linspace(self.bound2[0] - 0.1*len2, self.bound2[1] + 0.1*len2, int(resolution))
list1 = torch.linspace(self.bound1[0] - range_l*len1, self.bound1[1] + range_r*len1, int(resolution))
list2 = torch.linspace(self.bound2[0] - range_l*len2, self.bound2[1] + range_r*len2, int(resolution))
grid = torch.meshgrid([list1,list2])
self.coefs1 = grid[0].flatten()
self.coefs2 = grid[1].flatten()
def __len__(self):
return self.coefs1.shape[0]
def __getitem__(self, idx):
return self.base_img + self.coefs1[idx] * self.vec1 + self.coefs2[idx] * self.vec2
def make_planeloader(images, args):
a, b_orthog, b, coords = get_plane(images[0], images[1], images[2])
planeset = plane_dataset(images[0], a, b_orthog, coords, resolution=args.resolution, range_l=args.range_l, range_r=args.range_r)
planeloader = torch.utils.data.DataLoader(
planeset, batch_size=256, shuffle=False, num_workers=2)
return planeloader