-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
221 lines (167 loc) · 8.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.autograd import Variable
from torch.nn.parameter import Parameter
class FeatureRegression(nn.Module):
def __init__(self, input_size):
super(FeatureRegression, self).__init__()
self.build(input_size)
def build(self, input_size):
self.W = Parameter(torch.Tensor(input_size, input_size))
self.b = Parameter(torch.Tensor(input_size))
m = torch.ones(input_size, input_size) - torch.eye(input_size, input_size)
self.register_buffer('m', m)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(0))
self.W.data.uniform_(-stdv, stdv)
if self.b is not None:
self.b.data.uniform_(-stdv, stdv)
def forward(self, x):
z_h = F.linear(x, self.W * Variable(self.m), self.b)
return z_h
class TemporalDecay(nn.Module):
def __init__(self, input_size, output_size, diag = False):
super(TemporalDecay, self).__init__()
self.diag = diag
self.build(input_size, output_size)
def build(self, input_size, output_size):
self.W = Parameter(torch.Tensor(output_size, input_size))
self.b = Parameter(torch.Tensor(output_size))
if self.diag == True:
assert(input_size == output_size)
m = torch.eye(input_size, input_size)
self.register_buffer('m', m)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(0))
self.W.data.uniform_(-stdv, stdv)
if self.b is not None:
self.b.data.uniform_(-stdv, stdv)
def forward(self, d):
if self.diag == True:
gamma = F.relu(F.linear(d, self.W * Variable(self.m), self.b))
else:
gamma = F.relu(F.linear(d, self.W, self.b))
gamma = torch.exp(-gamma)
return gamma
class Cog_Model(nn.Module):
def __init__(self, rnn_hid_size, impute_weight, reg_weight, label_weight, classes=False):
super(Cog_Model, self).__init__()
self.rnn_hid_size = rnn_hid_size
self.impute_weight = impute_weight
self.reg_weight = reg_weight
self.label_weight = label_weight
self.classes = classes
self.features = 9
self.seq_length = 10
self.build()
def build(self):
# Call the Recurrent model
self.rnn_cell = nn.LSTMCell(self.features * 2, self.rnn_hid_size)
# Call the information of temporal relation
self.temp_decay_h = TemporalDecay(input_size = self.features, output_size = self.rnn_hid_size, diag = False)
self.temp_decay_x = TemporalDecay(input_size = self.features, output_size = self.features, diag = True)
self.hist_reg = nn.Linear(self.rnn_hid_size, self.features)
# Call the information of feature-wise relation
self.feat_reg = FeatureRegression(self.features)
self.weight_combine = nn.Linear(self.features * 2, self.features)
self.dropout = nn.Dropout(p = 0.25)
# Output of the proposed model
self.out_reg1 = nn.Linear(self.rnn_hid_size, 6) # MRI-biomarkers
self.out_reg2 = nn.Linear(self.rnn_hid_size, 1) # MMSE
self.out_reg3 = nn.Linear(self.rnn_hid_size, 1) # ADAS-cog11
self.out_reg4 = nn.Linear(self.rnn_hid_size, 1) # ADAS-cog13
if self.classes == True:
self.out_cls1 = nn.Linear(self.rnn_hid_size, 3) # For classification task
def forward(self, data, direct, criterion_reg, criterion_cls, multi_flag=False):
values = data[direct]['values'][:, :10, :]
masks = data[direct]['masks'][:, :10, :]
deltas = data[direct]['deltas'][:, :10, :]
evals = data[direct]['evals']
eval_masks = data[direct]['eval_masks']
# labels = data['labels'][:,1:].contiguous().view(-1, 1)
labels = data['labels'][:, :10].contiguous().view(-1, 1)
labels_indicator = torch.ones_like(labels)
labels_indicator[torch.where(labels == -2)[0]] = 0
h = Variable(torch.zeros((values.size()[0], self.rnn_hid_size)))
c = Variable(torch.zeros((values.size()[0], self.rnn_hid_size)))
if torch.cuda.is_available():
h, c = h.cuda(), c.cuda()
x_loss = 0.0
imputations = []
output_reg, output_cls = [], []
output_probs = []
analyze_cell = []
output_mmse, output_ad11, output_ad13 = [], [], []
observe_t = 10
n = observe_t
for t in range(self.seq_length):
x = values[:, t, :]
m = masks[:, t, :]
d = deltas[:, t, :]
gamma_h = self.temp_decay_h(d)
gamma_x = self.temp_decay_x(d)
x_h = self.hist_reg(h)
h = h * gamma_h
x_loss += torch.sum(torch.abs(x - x_h) * m) / (torch.sum(m) + 1e-5)
x_c = m * x + (1 - m) * x_h
z_h = self.feat_reg(x_c)
x_loss += torch.sum(torch.abs(x - z_h) * m) / (torch.sum(m) + 1e-5)
alpha = self.weight_combine(torch.cat([gamma_x, m], dim = 1))
c_h = alpha * z_h + (1 - alpha) * x_h
x_loss += torch.sum(torch.abs(x - c_h) * m) / (torch.sum(m) + 1e-5)
c_c = m * x + (1 - m) * c_h
inputs = torch.cat([c_c, m], dim = 1)
h, c = self.rnn_cell(inputs, (h, c))
imputations.append(c_c.unsqueeze(dim=1))
y_h = self.out_reg1(h)
y_mmse = self.out_reg2(h)
y_ad11 = self.out_reg3(h)
y_ad13 = self.out_reg4(h)
output_reg.append(y_h.unsqueeze(dim=1))
output_mmse.append(y_mmse.unsqueeze(dim=1))
output_ad11.append(y_ad11.unsqueeze(dim=1))
output_ad13.append(y_ad13.unsqueeze(dim=1))
if multi_flag == True:
y_cls = self.out_cls1(h)
output_prob = torch.softmax(y_cls, dim=1)
output_cls.append(y_cls.unsqueeze(dim=1))
output_probs.append(output_prob.unsqueeze(dim=1))
analyze_cell.append(c.unsqueeze(dim=1))
imputations = torch.cat(imputations, dim = 1)
output_reg = torch.cat(output_reg, dim=1)
output_mmse = torch.cat(output_mmse, dim=1)
output_ad11 = torch.cat(output_ad11, dim=1)
output_ad13 = torch.cat(output_ad13, dim=1)
analyze_cell = torch.cat(analyze_cell, dim=1)
shifted_data = data[direct]['values'][:, 1:, :6]
shifted_mask = data[direct]['masks'][:, 1:, :6]
if multi_flag == True:
output_cls = torch.cat(output_cls, dim = 1)
output_probs = torch.cat(output_probs, dim = 1)
y_reg_loss = criterion_reg(output_reg.contiguous().view(-1,6) * shifted_mask.contiguous().view(-1, 6),
(shifted_data * shifted_mask).contiguous().view(-1, 6))
y_mmse_loss = criterion_reg(output_mmse.contiguous()*data[direct]['masks'][:, 1:, 6:7],
(data[direct]['values'][:, 1:, 6:7]*data[direct]['masks'][:, 1:, 6:7]))
y_ad11_loss = criterion_reg(output_ad11.contiguous()* data[direct]['masks'][:, 1:, 7:8],
(data[direct]['values'][:, 1:, 7:8] * data[direct]['masks'][:, 1:, 7:8]))
y_ad13_loss = criterion_reg(output_ad13.contiguous()* data[direct]['masks'][:, 1:, 8:9],
(data[direct]['values'][:, 1:, 8:9] * data[direct]['masks'][:, 1:, 8:9]))
if multi_flag == True:
y_cls_loss = criterion_cls(output_probs.contiguous().view(-1,3), labels.squeeze().long())
return {'loss': x_loss * self.impute_weight + (y_mmse_loss + y_ad11_loss + y_ad13_loss + y_reg_loss) * self.reg_weight + y_cls_loss * self.label_weight,
'predictions': output_probs.contiguous().view(-1, 3),
'predictions_feature': output_reg.contiguous().view(-1, 6), \
'imputations': imputations, 'labels': labels, 'is_train': labels_indicator, \
'evals': evals, 'eval_masks': eval_masks, 'shifted_data': shifted_data, 'shifted_mask': shifted_mask, 'analy':analyze_cell, 'analy_label': data['labels'].contiguous().view(-1, 1),
'predict_mmse': output_mmse.contiguous(), 'predict_ad11': output_ad11.contiguous(), 'predict_ad13': output_ad13.contiguous()}
def run_on_batch(self, data, optimizer, criterion_reg, criterion_cls, multi_flag, epoch = None):
ret = self(data, direct = 'forward', criterion_reg = criterion_reg, criterion_cls = criterion_cls, multi_flag = multi_flag)
if optimizer is not None:
optimizer.zero_grad()
ret['loss'].backward()
optimizer.step()
return ret