forked from jiewwantan/StarTrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
249 lines (191 loc) · 7.17 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import sys
import multiprocessing
import os.path as osp
import gym
from collections import defaultdict
import tensorflow as tf
import numpy as np
from baselines.common.vec_env.vec_video_recorder import VecVideoRecorder
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.common.cmd_util import common_arg_parser, parse_unknown_args, make_vec_env, make_env
from baselines.common.tf_util import get_session
from baselines import logger
from importlib import import_module
from baselines.common.vec_env.vec_normalize import VecNormalize
try:
from mpi4py import MPI
except ImportError:
MPI = None
try:
import pybullet_envs
except ImportError:
pybullet_envs = None
try:
import roboschool
except ImportError:
roboschool = None
_game_envs = defaultdict(set)
for env in gym.envs.registry.all():
# TODO: solve this with regexes
env_type = env._entry_point.split(':')[0].split('.')[-1]
_game_envs[env_type].add(env.id)
# reading benchmark names directly from retro requires
# importing retro here, and for some reason that crashes tensorflow
# in ubuntu
_game_envs['retro'] = {
'BubbleBobble-Nes',
'SuperMarioBros-Nes',
'TwinBee3PokoPokoDaimaou-Nes',
'SpaceHarrier-Nes',
'SonicTheHedgehog-Genesis',
'Vectorman-Genesis',
'FinalFight-Snes',
'SpaceInvaders-Snes',
}
def train(args, extra_args):
env_type, env_id = get_env_type(args.env)
print('env_type: {}'.format(env_type))
total_timesteps = int(args.num_timesteps)
seed = args.seed
learn = get_learn_function(args.alg)
alg_kwargs = get_learn_function_defaults(args.alg, env_type)
alg_kwargs.update(extra_args)
env = build_env(args)
if args.save_video_interval != 0:
env = VecVideoRecorder(env, osp.join(logger.Logger.CURRENT.dir, "videos"),
record_video_trigger=lambda x: x % args.save_video_interval == 0, video_length=args.save_video_length)
if args.network:
alg_kwargs['network'] = args.network
else:
if alg_kwargs.get('network') is None:
alg_kwargs['network'] = get_default_network(env_type)
print('Training {} on {}:{} with arguments \n{}'.format(args.alg, env_type, env_id, alg_kwargs))
model = learn(
env=env,
seed=seed,
total_timesteps=total_timesteps,
**alg_kwargs
)
return model, env
def build_env(args):
ncpu = multiprocessing.cpu_count()
if sys.platform == 'darwin': ncpu //= 2
nenv = args.num_env or ncpu
alg = args.alg
seed = args.seed
env_type, env_id = get_env_type(args.env)
if env_type in {'atari', 'retro'}:
if alg == 'deepq':
env = make_env(env_id, env_type, seed=seed, wrapper_kwargs={'frame_stack': True})
elif alg == 'trpo_mpi':
env = make_env(env_id, env_type, seed=seed)
else:
frame_stack_size = 4
env = make_vec_env(env_id, env_type, nenv, seed, gamestate=args.gamestate, reward_scale=args.reward_scale)
env = VecFrameStack(env, frame_stack_size)
else:
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
get_session(config=config)
flatten_dict_observations = alg not in {'her'}
env = make_vec_env(env_id, env_type, args.num_env or 1, seed, reward_scale=args.reward_scale, flatten_dict_observations=flatten_dict_observations)
if env_type == 'mujoco':
env = VecNormalize(env)
return env
def get_env_type(env_id):
# Re-parse the gym registry, since we could have new envs since last time.
for env in gym.envs.registry.all():
env_type = env._entry_point.split(':')[0].split('.')[-1]
_game_envs[env_type].add(env.id) # This is a set so add is idempotent
if env_id in _game_envs.keys():
env_type = env_id
env_id = [g for g in _game_envs[env_type]][0]
else:
env_type = None
for g, e in _game_envs.items():
if env_id in e:
env_type = g
break
assert env_type is not None, 'env_id {} is not recognized in env types'.format(env_id, _game_envs.keys())
return env_type, env_id
def get_default_network(env_type):
if env_type in {'atari', 'retro'}:
return 'cnn'
else:
return 'mlp'
def get_alg_module(alg, submodule=None):
submodule = submodule or alg
try:
# first try to import the alg module from baselines
alg_module = import_module('.'.join(['baselines', alg, submodule]))
except ImportError:
# then from rl_algs
alg_module = import_module('.'.join(['rl_' + 'algs', alg, submodule]))
return alg_module
def get_learn_function(alg):
return get_alg_module(alg).learn
def get_learn_function_defaults(alg, env_type):
try:
alg_defaults = get_alg_module(alg, 'defaults')
kwargs = getattr(alg_defaults, env_type)()
except (ImportError, AttributeError):
kwargs = {}
return kwargs
def parse_cmdline_kwargs(args):
'''
convert a list of '='-spaced command-line arguments to a dictionary, evaluating python objects when possible
'''
def parse(v):
assert isinstance(v, str)
try:
return eval(v)
except (NameError, SyntaxError):
return v
return {k: parse(v) for k,v in parse_unknown_args(args).items()}
def main(args):
# configure logger, disable logging in child MPI processes (with rank > 0)
arg_parser = common_arg_parser()
args, unknown_args = arg_parser.parse_known_args(args)
extra_args = parse_cmdline_kwargs(unknown_args)
if args.extra_import is not None:
import_module(args.extra_import)
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
rank = 0
logger.configure()
else:
logger.configure(format_strs=[])
rank = MPI.COMM_WORLD.Get_rank()
# If argument indicate training to be done:
model, env = train(args, extra_args)
env.close()
if args.save_path is not None and rank == 0:
save_path = osp.expanduser(args.save_path)
model.save(save_path)
saver = tf.train.Saver()
#logger.info("saving the trained model")
#start_time_save = time.time()
#saver.save(sess, save_path + "ddpg_test_model")
#logger.info('runtime saving: {}s'.format(time.time() - start_time_save))
# If it is a test run on the learned model
if args.play:
logger.log("Running trained model")
env = build_env(args)
obs = env.reset()
state = model.initial_state if hasattr(model, 'initial_state') else None
dones = np.zeros((1,))
while True:
if state is not None:
actions, _, state, _ = model.step(obs,S=state, M=dones)
else:
actions, _, _, _ = model.step(obs)
obs, _, done, _ = env.step(actions)
env.render()
done = done.any() if isinstance(done, np.ndarray) else done
if done:
obs = env.reset()
env.close()
return model
if __name__ == '__main__':
main(sys.argv)