-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathident2.v
843 lines (646 loc) · 37.2 KB
/
ident2.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
Require Import ssreflect ssrnat ssrbool seq eqtype Ring Group ident.
Import Ring.ideal.
Definition conj' := locked conj.
Notation "h ^^ g" := (conj' h g) (at level 11, left associativity).
Parameter Z': forall {i j : nat} (p : i != j) (a : I) (r : R), ZZ.
Definition X' {i j : nat} (p : i != j) r := Z' p r (0).
(* We assume that rank is at least 3 *)
Axiom fresh2: forall (i j : nat), exists k, k!=i /\ k!=j.
Axiom fresh3: forall (i j k : nat), exists l, l!=i /\ l!=j /\ l!=k.
Module ZC_Rules.
Section Axioms.
Context (i j k l : nat) {a a1 a2 : I} (b c : R).
(* Definition of the action of the Steinberg group on relative generators *)
(* Don't use it
Axiom ZC1: forall (ij : i!=j) (jk : j!=k) (ik : i!=k) (ji : j!=i) (kj : k!=j) (ki : k!=i),
Z' ij a b ^^ X ij c =
X' ji (- b *_ a _* b) ^^ X ik (- c * b - 1) .*
Z' ki (a _* b) (- c * b - 1) .*
X' ij ((c * b + 1) *_ a _* (b * c + 1)) ^^ X jk b .*
Z' kj (a _* (b * c + 1)) b .*
X' kj (-_ a) .* X' ki (-_ a _* b) ^^ X ij c. *)
Axiom ZC1: forall (ij : i!=j) (jk : j!=k) (ik : i!=k) (ji : j!=i) (kj : k!=j) (ki : k!=i),
Z' ij a b ^^ X ij c =
X' ki (a _* b) .*
X' kj (a _* (b * c + 1)) .*
X' kj (-_ (a _* (b * c + 1))) ^^ X jk (- b) ^^ X ik (c * b + 1) .*
X' ki (-_ (a _* b)) ^^ X jk (- b) ^^ X ik (c * b + 1).
Axiom ZC2: forall (ij : i != j) (ji : j != i),
(Z' ij a b) ^^ (X ji c) = Z' ij a (b + c).
Axiom ZC3: forall (ij : i != j) (jk : j != k) (ik : i != k) (ki : k != i) (ik : i != k),
(Z' ij a b) ^^ (X jk c) = X' jk (-_ (b *_ a _* c)) .* X' ik (a _* c) .* Z' ij a b.
Axiom ZC3': forall (ij : i != j) (ik : i != k) (ki : k != i) (kj: k != j),
(Z' ij a b) ^^ (X ki c) = X' ki (-_ (c *_ a _* b)) .* X' kj (-_(c *_ a)) .* Z' ij a b.
Axiom ZC4: forall (ij : i!=j) (kj : k!=j) (ki : k!=i),
(Z' ij a b) ^^ (X kj c) = X' ki (c * b *_ a _* b) .* X' kj (c * b *_ a) .* Z' ij a b.
Axiom ZC4': forall (ij : i!=j) (jk : j!=k) (ik : i!=k),
(Z' ij a b) ^^ (X ik c) = X' jk (-_ (b *_ a _* b _* c)) .* X' ik (a _* b _* c) .* Z' ij a b.
Axiom ZC5: forall (ij : i!=j) (jk : j!=k) (ik : i!=k) (il : i!=l) (jl : j!=l) (kl : k!=l),
(Z' ij a b) ^^ (X kl c) = Z' ij a b.
End Axioms.
End ZC_Rules.
(* Definition of Relations between relative generators *)
Module AxiomLevel0.
Axiom Z0: forall (i j : nat) a1 a2 b (ij : i!=j), Z' ij (a1 _+_ a2) b = Z' ij a1 b .* Z' ij a2 b.
End AxiomLevel0.
Module AxiomLevel1. Export AxiomLevel0 ZC_Rules.
Axiom Z2: forall (i j k l : nat) a a1 b (ij : i!=j) (kl : k!=l),
(X' kl (-_a1) .* Z' ij a b .* X' kl a1) = Z' ij a b ^^ X kl a1.
End AxiomLevel1.
Module AxiomLevel2. Export AxiomLevel1.
Axiom Z1: forall (i j k l : nat) a1 a2 b c {ij : i != j} {ik : i != k} {jk : j != k} {kl : k != l} {il : i != l} {jl : j != l}
{ji : j != i} {ki : k != i} {kj : k != j} {lk : l != k} {li : l != i} {lj : l != j},
Z' ij a1 b .* Z' kl a2 c = Z' kl a2 c .* Z' ij a1 b.
End AxiomLevel2.
Module AxiomLevel3. Export AxiomLevel2.
Axiom Z3R': forall i j k a b c (ij : i!=j) (jk : j!=k) (ik : i!=k) (ki : k!=i) (kj : k!=j) (ji : j!=i),
(X' kj a ^^ X ik (- b)) ^^ X ji c =
((X' kj a ^^ X ji c) ^^ X ik (- b)) ^^ X jk (c * b).
End AxiomLevel3.
Section BasicLemmata. Import AxiomLevel0.
Context (i j : nat) (a : I) (ij : i!=j).
Lemma Z'zero: forall b, Z' ij 0 b = Id.
intros. apply (GCr (Z' ij 0 b)). rewrite -Z0. by rewrite IdG; rsimpl. Qed.
Lemma Z'Inv: forall b, Z' ij (-_a) b = (Z' ij a b)^-1.
intros. apply (GCr (Z' ij a b)). by rewrite -Z0 inv_l' IG Z'zero. Qed.
Lemma X'def: Z' ij a 0 = X' ij a. done. Qed.
Lemma X'zero: X' ij 0 = Id.
by rewrite /X' Z'zero. Qed.
Lemma X'Inv: X' ij (-_a) = (X' ij a)^-1.
by rewrite /X' Z'Inv. Qed.
End BasicLemmata.
Section XCorollaries. Import AxiomLevel1.
Context (i j k l : nat) {a a1 a2 : I} {b c d : R}
{ij : i != j} {ik : i != k} {jk : j != k} {kl : k != l} {il : i != l} {jl : j != l}
{ji : j != i} {ki : k != i} {kj : k != j} {lk : l != k} {li : l != i} {lj : l != j}.
Ltac ZX E := rewrite /X'; rewrite E; rewrite /X'; rsimpl; rewrite ?Z'zero; cancel.
Lemma X0: X' ij a1 .* X' ij a2 = X' ij (a1 _+_ a2). by ZX Z0. Qed.
Lemma X1: X' ij a ^^ X ji b = Z' ij a b. by rewrite /X' ZC2 ?X'def plus_0_l. Qed.
Corollary X0': forall (g : ZZ), g .* X' ij a1 .* X' ij a2 = g .* X' ij (a1 _+_ a2).
intros. by rewrite GA -X0. Qed.
(* For XC1 see below *)
Corollary XC2: (X' ij a) ^^ (X ji c) = Z' ij a c.
by move: (@ZC2 i j a (0) c ij ji) => /=; rewrite /X' plus_0_l => ->. Qed.
Corollary XC3: (X' ij a) ^^ (X jk c) = X' ik (a _* c) .* X' ij a.
by ZX ZC3. Qed.
Corollary XC3': (X' ij a) ^^ (X ki c) = X' kj (-_ (c *_ a)) .* X' ij a.
by ZX ZC3'. Qed.
Corollary XC4: (X' ij a) ^^ (X kj c) = X' ij a.
by ZX ZC4. Qed.
Corollary XC4': (X' ij a) ^^ (X ik c) = X' ij a.
by ZX ZC4'. Qed.
Corollary XC5: (X' ij a) ^^ (X kl c) = X' ij a.
by ZX ZC5. Qed.
Corollary XC4_swap: (X' ij a1) .* (X' kj a2) = (X' kj a2) .* (X' ij a1).
rewrite {1}swap_comm comm_d1 -X'Inv. cancel. rewrite /conj -X'Inv.
rewrite {2}/X' Z2 ZC4. rsimpl. rewrite ?X'zero X'def. by cancel. Qed.
Corollary XC4'_swap: (X' ij a1) .* (X' ik a2) = (X' ik a2) .* (X' ij a1).
rewrite {1}swap_comm comm_d1 -X'Inv. cancel. rewrite /conj -X'Inv.
rewrite {2}/X' Z2 ZC4'. rsimpl. rewrite ?X'zero X'def. by cancel. Qed.
Corollary XC4_swap': forall (g : ZZ), g .* (X' ij a1) .* (X' kj a2) = g .* (X' kj a2) .* (X' ij a1).
intros. by rewrite GA XC4_swap ?GA. Qed.
Corollary XC4'_swap': forall (g : ZZ), g .* (X' ij a1) .* (X' ik a2) = g .* (X' ik a2) .* (X' ij a1).
intros. by rewrite GA XC4'_swap ?GA. Qed.
Corollary XC5_swap: (X' ij a1) .* (X' kl a2) = (X' kl a2) .* (X' ij a1).
rewrite {1}swap_comm comm_d1 -X'Inv. cancel. by rewrite /conj -X'Inv {2}/X' Z2 ZC5. Qed.
Corollary XC5_swap' g: g .* (X' ij a1) .* (X' kl a2) = g .* (X' kl a2) .* (X' ij a1).
by rewrite ?GA XC5_swap. Qed.
End XCorollaries.
Section SwapLemmata. Export AxiomLevel1.
Context (i j k l : nat) {a a1 a2 : I} {b c d : R}
{ij : i != j} {ik : i != k} {jk : j != k} {kl : k != l} {il : i != l} {jl : j != l}
{ji : j != i} {ki : k != i} {kj : k != j} {lk : l != k} {li : l != i} {lj : l != j}.
Corollary XC1: (X' ij a) ^^ (X ij c) = X' ij (a). Admitted.
(* Proof involves certain facts which are disallowed in current setting*)
(* rewrite (@ZC1 i j k a (0) c)//; rsimpl;
rewrite ?Z'zero ?X'zero ?X'def Xzero conjId //; cancel.
by rewrite X0' inv_r' X'zero GId. Qed. *)
Corollary ZC3_swap: (Z' ij a b) .* (X' jk a1) =
(X' jk ((1 - b * a) *_ a1)) .* X' ik (a _* a1) .* Z' ij a b.
apply (GCl (X' jk (-_a1))). rewrite -?GA.
by rewrite Z2 X0 dist_r'; rsimpl; rewrite -plus_assoc' inv_l' ZC3; rsimpl. Qed.
Corollary ZC3_swap' g: g .* (Z' ij a b) .* (X' jk a1) =
g .* (X' jk ((1 - b * a) *_ a1)) .* X' ik (a _* a1) .* Z' ij a b.
by rewrite GA ZC3_swap ?GA. Qed.
Corollary ZC4'_swap: (Z' ij a b) .* (X' ik a1) =
X' ik (a1 _+_ a * b *_ a1) .* X' jk (-_ (b * a * b *_ a1)) .* Z' ij a b.
apply (GCl (X' ik (-_a1))). rewrite -X0; cancellate.
by rewrite Z2 ZC4' X0 X0 XC4_swap // inv_l' plus_0_l'; rsimpl. Qed.
Corollary ZC4'_swap' g: g .* (Z' ij a b) .* (X' ik a1) =
g .* X' ik (a1 _+_ a * b *_ a1) .* X' jk (-_ (b * a * b *_ a1)) .* Z' ij a b.
by rewrite GA ZC4'_swap ?GA. Qed.
Corollary ZC3'_swap: (Z' ij a b) .* (X' ki a1) =
(X' ki a1) .* X' ki (-_ (a1 _* a _* b)) .* X' kj (-_ (a1 _* a)) .* Z' ij a b.
apply (GCl (X' ki (-_a1))). cancellate.
by rewrite X0 inv_l' X'zero IdG Z2 ZC3'; rsimpl. Qed.
Corollary ZC3'_swap' g: g .* (Z' ij a b) .* (X' ki a1) =
g .* (X' ki a1) .* X' ki (-_ (a1 _* a _* b)) .* X' kj (-_ (a1 _* a)) .* Z' ij a b.
by rewrite GA ZC3'_swap ?GA. Qed.
Corollary ZC4_swap:
(Z' ij a b) .* (X' kj a1) =
(X' kj a1) .* X' ki (a1 _* b _* a _* b) .* X' kj (a1 _* b _* a) .* Z' ij a b.
apply (GCl ((X' kj (-_a1)))). cancellate.
by rewrite Z2 ZC4 X0 inv_l' X'zero IdG; rsimpl. Qed.
Corollary ZC4_swap' g:
g .* (Z' ij a b) .* (X' kj a1) =
g .* (X' kj a1) .* X' ki (a1 _* b _* a _* b) .* X' kj (a1 _* b _* a) .* Z' ij a b.
by rewrite GA ZC4_swap ?GA. Qed.
Corollary ZC5_swap:
(Z' ij a b) .* (X' kl a1) = (X' kl a1) .* (Z' ij a b).
apply (GCl (X' kl (-_a1))). rewrite -?GA; cancellate.
by rewrite Z2 ZC5 // X0 inv_l' X'zero IdG. Qed.
Corollary ZC5_swap' g:
g .* (Z' ij a b) .* (X' kl a1) = g .* (X' kl a1) .* (Z' ij a b).
by rewrite ?GA ZC5_swap. Qed.
End SwapLemmata.
Section SwapLemmata2.
Export AxiomLevel1.
Context (i j k l : nat) {a a1 a2 : I} {b c d : R}
{ij : i != j} {ik : i != k} {jk : j != k} {kl : k != l} {il : i != l} {jl : j != l}
{ji : j != i} {ki : k != i} {kj : k != j} {lk : l != k} {li : l != i} {lj : l != j}.
Corollary ZC3_swap_i: (X' jk a1) .* (Z' ij a b) =
Z' ij a b .* X' ik (-_ a _* a1) .* X' jk ((1 + b * a) *_ a1).
apply /eq_inv. by rewrite ?GIM -?X'Inv -?Z'Inv ZC3_swap // -?GA; rsimpl. Qed.
Corollary ZC3_swap'_i g: g .* (X' jk a1) .* (Z' ij a b) =
g .* Z' ij a b .* X' ik (-_ a _* a1) .* X' jk ((1 + b * a) *_ a1).
by rewrite GA ZC3_swap_i -?GA. Qed.
Corollary ZC3'_swap_i: (X' ki a1) .* (Z' ij a b) =
Z' ij a b .* X' kj ((a1 _* a)) .* X' ki ((a1 _* a _* b)) .* (X' ki a1).
apply eq_inv. by rewrite ?GIM -?X'Inv -?Z'Inv ZC3'_swap // -?GA; rsimpl. Qed.
Corollary ZC3'_swap'_i g: g.* (X' ki a1) .* (Z' ij a b) =
g .* Z' ij a b .* X' kj ((a1 _* a)) .* X' ki ((a1 _* a _* b)) .* (X' ki a1).
by rewrite GA ZC3'_swap_i -?GA. Qed.
Corollary ZC4_swap_i:
(X' kj a1) .* (Z' ij a b) =
Z' ij a b .* X' kj (-_ a1 _* b _* a) .* X' ki (-_ a1 _* b _* a _* b) .* (X' kj a1).
apply eq_inv. by rewrite ?GIM -?X'Inv -?Z'Inv ZC4_swap // -?GA; rsimpl. Qed.
Corollary ZC4_swap'_i g:
g .* (X' kj a1) .* (Z' ij a b) =
g .* Z' ij a b .* X' kj (-_ a1 _* b _* a) .* X' ki (-_ a1 _* b _* a _* b) .* (X' kj a1).
by rewrite GA ZC4_swap_i -?GA. Qed.
Corollary ZC4'_swap_i: (X' ik a1) .* (Z' ij a b) =
Z' ij a b .* X' jk ((b * a * b *_ a1)) .* X' ik (a1 _+_ -a * b *_ a1).
apply eq_inv. rewrite ?GIM -?X'Inv -?Z'Inv ZC4'_swap // -?GA; rsimpl. by rewrite inv_plus' invI'. Qed.
Corollary ZC4'_swap'_i g: g .* (X' ik a1) .* (Z' ij a b) =
g.* Z' ij a b .* X' jk ((b * a * b *_ a1)) .* X' ik (a1 _+_ -a * b *_ a1).
by rewrite GA ZC4'_swap_i -?GA. Qed.
End SwapLemmata2.
Module ZC_tactic. Export ZC_Rules.
Ltac Z_guard :=
match goal with
| [ |- is_true (negb (eq_op ?X ?X)) ] => fail 1
| [ |- is_true (negb (eq_op ?X ?Y)) ] => done
| [ |- _ ] => idtac
end.
Ltac safe_rw E := try (rewrite E; Z_guard).
Tactic Notation "safe_rw4" reference(F1) "," reference(F2) ","
reference(F3) "," reference(F4) :=
safe_rw F1; safe_rw F2; safe_rw F3; safe_rw F4.
Axiom forward_rule: forall h1 h2 g, conj' (h1 .* h2) g = (conj' h1 g) .* (conj' h2 g).
Axiom identity_rule: forall h, conj' Id h = Id.
Ltac pure_ZC :=
safe_rw4 XC2, ZC2, XC3, ZC3;
safe_rw4 XC3', ZC3', XC4, ZC4;
safe_rw4 XC4', ZC4', XC5, ZC5;
rewrite ?forward_rule ?identity_rule; rsimpl; cancel.
Ltac ZCR0 := repeat pure_ZC.
End ZC_tactic.
Section Z0_ZC. Import ZC_tactic AxiomLevel1.
Context (i j k : nat) (a a1 a2 : I) (b c : R)
(ij : i != j) (ik : i != k) (jk : j != k) (ji : j != i) (ki : k != i) (kj : k != j).
(* Boilerplate lemmata about preservation of Relation Z0 *)
Lemma Z0_ZC2: (Z' ij (a1 _+_ a2) b) ^^ (X ji c) = (Z' ij (a1) b) ^^ (X ji c) .* (Z' ij (a2) b) ^^ (X ji c).
ZCR0. by rewrite Z0. Qed.
Lemma Z0_ZC3: (Z' ij (a1 _+_ a2) b) ^^ (X jk c) = (Z' ij (a1) b) ^^ (X jk c) .* (Z' ij (a2) b) ^^ (X jk c).
ZCR0.
rewrite -?X'Inv; rexpand; rewrite -?X0 Z0; bite.
rewrite XC4_swap //; bite.
rewrite ZC3_swap //; rexpand; rsimpl; rewrite -X0; bite.
rewrite ZC4'_swap' // X0' XC4_swap // plus_comm' plus_assoc'.
rsimpl. rewrite inv_r' plus_0_r'. bite.
by rewrite X0 inv_r' X'zero IdG. Qed.
Lemma Z0_ZC3': (Z' ij (a1 _+_ a2) b) ^^ (X ki c) = (Z' ij a1 b) ^^ (X ki c) .* (Z' ij a2 b) ^^ (X ki c).
ZCR0.
rewrite -?X'Inv; rexpand; rewrite -X0 Z0. bite.
rewrite XC4'_swap // -X0; bite.
rewrite ZC3'_swap // XC4'_swap //. bite.
rewrite ZC4_swap' ?X0'. bite.
rewrite ?X0' XC4'_swap' ?X0' // XC4'_swap // plus_comm' -?plus_assoc'.
rsimpl. by rewrite inv_l' plus_0_l' ?X0' inv_r' X'zero GId. Qed.
Lemma Z0_ZC4: (Z' ij (a1 _+_ a2) b) ^^ (X kj c) = (Z' ij a1 b) ^^ (X kj c) .* (Z' ij a2 b) ^^ (X kj c).
ZCR0.
rexpand. rewrite -X0 Z0. bite.
rewrite XC4'_swap // -X0. bite.
rewrite ZC3'_swap // X0.
rewrite ZC4_swap' // X0'. bite. rsimpl.
rewrite XC4'_swap // -X0. bite.
by rewrite XC4'_swap // X0' inv_l' X'zero GId X0 plus_comm'
-?plus_assoc' inv_r' plus_0_l'. Qed.
Lemma Z0_ZC4' : (Z' ij (a1 _+_ a2) b) ^^ (X ik c) = (Z' ij a1 b) ^^ (X ik c) .* (Z' ij a2 b) ^^ (X ik c).
ZCR0.
rewrite -?X'Inv. rexpand. rewrite -X0 Z0. bite.
rewrite XC4_swap // -X0. bite.
rewrite ZC3_swap // ZC4'_swap' // ?X0'. bite.
rewrite XC4_swap' // X0 XC4_swap //. rexpand. rsimpl.
rewrite plus_assoc' inv_r' plus_0_r' (plus_comm' (a2 _* b _* c)) -plus_assoc'. rsimpl.
by rewrite inv_l' plus_0_l'. Qed.
Context (l : nat) (il : i != l) (li : l != i) (jl : j != l) (lj : l != j) (kl : k != l) (lk : l != k).
Lemma Z0_ZC5: (Z' ij (a1 _+_ a2) b) ^^ (X kl c) =
(Z' ij (a1) b) ^^ (X kl c) .* (Z' ij (a2) b) ^^ (X kl c).
by rewrite ?ZC5 // Z0. Qed.
Import AxiomLevel3.
(* This is not that simple *)
Lemma Z0_ZC1: (Z' ij (a1 _+_ a2) b) ^^ (X ij c) = (Z' ij (a1) b) ^^ (X ij c) .* (Z' ij (a2) b) ^^ (X ij c).
rewrite ?(ZC1 _ _ k) //.
+ rewrite dist_r'' -X0. bite.
+ rewrite {1}dist_r'' -X0 -?GA XC4'_swap //. bite.
Abort.
End Z0_ZC.
Section Z2_ZC. Import ZC_tactic AxiomLevel2.
(* Ltac ZC := rewrite -?X'Inv -?Z'Inv ?XC1; pure_ZC;
rewrite ?X'def ?X'Inv ?Z'Inv; rsimpl;
rewrite ?Z'zero ?X'zero -?GA; cancel.
Ltac ZCR := repeat ZC. *)
Context (i j k l m n : nat) {a a1 a2 : I} {b c d : R}
{ij : i != j} {ji : j != i}
{ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}
{kl : k != l} {il : i != l} {jl : j != l} {lk : l != k} {li : l != i} {lj : l != j}
{mi : m != i} {mj : m != j} {mk : m != k} {ml : m != l}
{im : i != m} {jm : j != m} {km : k != m} {lm : l != m}
{ni : n != i} {nj : n != j} {nk : n != k} {nl : n != l} {nm : n != m}
{in' : i != n} {jn : j != n} {kn : k != n} {ln : l != n} {mn : m != n}.
(* Preservation of Z2 (ZC5 flavour) *)
Lemma Z2_00: (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X ji c) = (Z' ij a1 b ^^ X kl a2) ^^ (X ji c).
ZCR0. by rewrite X'def ZC5_swap' // X0 inv_l' X'zero IdG. Qed.
Import AxiomLevel3.
Lemma Z2_00': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X lk c) = (Z' ij a1 b ^^ X kl a2) ^^ (X lk c).
ZCR0.
Abort.
Lemma Z2_00'': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X kl c) = (Z' ij a1 b ^^ X kl a2) ^^ (X kl c).
ZCR0. by rewrite ?XC1 (ZC5_swap' i j) // ?X'Inv; cancel. Qed.
Lemma Z2_04: (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X ik c) = (Z' ij a1 b ^^ X kl a2) ^^ (X ik c).
ZCR0. rewrite ?X'zero ?IdG -?GA ?X'def.
rewrite XC4_swap //.
rewrite (XC5_swap' i l j k) //.
rewrite (XC4'_swap' i l k) //.
rewrite ZC4'_swap' // X0'; rsimpl; rewrite -plus_assoc' inv_r' plus_0_l'.
rewrite ZC5_swap' //; bite.
rewrite (XC4_swap' j l k) //.
rewrite (XC4_swap' i l k) //.
rewrite (ZC3_swap' i k l) //; rsimpl.
rewrite X'def (ZC3_swap' j k l) //; rsimpl; rewrite X'def ?X'Inv; cancel.
rewrite -?X'Inv (XC4'_swap' i l k) // X0' inv_r' X'zero GId.
rewrite XC4'_swap //.
by rewrite (XC5_swap' j l i k) // X0' inv_l' X'zero GId. Qed.
Lemma Z2_04': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X il c) = (Z' ij a1 b ^^ X kl a2) ^^ (X il c).
ZCR0. by rewrite ?X'zero ?IdG -?GA ?X'def XC4_swap // ZC5_swap' //
(XC4_swap' i l k) // X0' inv_l' X'zero GId; rsimpl. Qed.
Lemma Z2_04'': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X ki c) = (Z' ij a1 b ^^ X kl a2) ^^ (X ki c).
ZCR0. by rewrite ?X'zero ?IdG -?GA ?X'def XC4'_swap // ZC5_swap' //
(XC4'_swap' k j l) // X0' inv_l' X'zero GId. Qed.
Lemma Z3_04''': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X li c) = (Z' ij a1 b ^^ X kl a2) ^^ (X li c).
ZCR0. rewrite ?X'zero ?IdG -?GA ?X'def.
rewrite XC4'_swap //.
rewrite (ZC3'_swap' i j k) //.
rewrite (XC4_swap' k i l) //.
rewrite (XC5_swap' k i l j) // ?X0' -plus_assoc' inv_l' plus_0_l'.
rewrite (ZC5_swap' i j k l) //.
rewrite (XC4'_swap' k j l) //.
rewrite (XC4'_swap' k i l) //.
rewrite (ZC3'_swap' l j k) //; rsimpl; rewrite X'zero X'def GId.
rewrite (XC4'_swap' k i j) // (XC4_swap' k j l) // X0' inv_r' X'zero GId.
rewrite ZC3_swap //; rsimpl; rewrite X'def X0' inv_l' X'zero GId.
by rewrite (XC5_swap' k i l j) // X0'; rsimpl; rewrite inv_r' X'zero GId. Qed.
Lemma Z2_05: (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X jk c) = (Z' ij a1 b ^^ X kl a2) ^^ (X jk c).
ZCR0. rewrite ?X'zero ?IdG -?GA ?X'def.
rewrite XC4_swap //.
rewrite (ZC3_swap' i j l) //.
rewrite (XC4'_swap' j l k) //.
rewrite (XC5_swap' i k j l) // ?X0'; rexpand; rsimpl; rewrite -plus_assoc' inv_r' plus_0_l'.
rewrite (ZC5_swap' i j k l) //.
rewrite (XC4_swap' i l k) //; bite.
rewrite (ZC3_swap' i k l) //; rsimpl; rewrite X'def.
rewrite (XC4'_swap' i k l) // X0' inv_r' X'zero GId; bite.
rewrite (XC4_swap' j l k) // (ZC3_swap' j k l) //; rsimpl; rewrite X'def.
by rewrite (XC4'_swap' j k l) // X0 ?X0' ?inv_l' ?X'zero ?IdG. Qed.
Lemma Z2_05': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X jl c) = (Z' ij a1 b ^^ X kl a2) ^^ (X jl c).
ZCR0. by rewrite ?X'zero ?IdG -?GA ?X'def XC4_swap // ZC5_swap' //
(XC4_swap' i l k) // X0' inv_l' X'zero GId; rsimpl. Qed.
Lemma Z2_05'': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X kj c) = (Z' ij a1 b ^^ X kl a2) ^^ (X kj c).
ZCR0. by rewrite ?X'zero ?IdG -?GA ?X'def XC4'_swap // ZC5_swap' //
(XC4'_swap' k j l) // X0' inv_l' X'zero GId. Qed.
(* Proof should be the same as above *)
Lemma Z3_05''': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X lj c) = (Z' ij a1 b ^^ X kl a2) ^^ (X lj c).
ZCR0. rewrite ?X'zero ?IdG -?GA ?X'def.
rewrite XC4'_swap //.
rewrite (ZC4_swap' i j k) //.
rewrite (XC5_swap' k j l i) //.
rewrite (ZC3_swap k l i) //; rsimpl; rewrite X'def; bite.
rewrite (XC4_swap' k j l) // X0' inv_l' X'zero GId.
rewrite (ZC3_swap' k l j) //; rsimpl; rewrite X'def.
rewrite XC5_swap //; bite.
rewrite ZC5_swap' //.
rewrite (XC4'_swap' k l i) //.
rewrite (XC4'_swap' k j i) // X0 inv_l' X'zero IdG.
rewrite (XC4'_swap' k l j) //. by do 2 rewrite X0 inv_l' X'zero IdG. Qed.
Lemma Z2_01: (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X mn c) = (Z' ij a1 b ^^ X kl a2) ^^ (X mn c).
ZCR0. by rewrite GA ZC5_swap // -GA X'Inv; cancel. Qed.
Lemma Z2_02: (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X jm c) = (Z' ij a1 b ^^ X kl a2) ^^ (X jm c).
ZCR0. by rewrite -?GA -?X'Inv (ZC5_swap' i j) // -?(XC5_swap' k l) // ?X'Inv; cancel. Qed.
Lemma Z2_02': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X im c) = (Z' ij a1 b ^^ X kl a2) ^^ (X im c).
ZCR0. rewrite -?GA -?X'Inv. repeat (rewrite (XC5_swap k l) //; bite). rewrite ?X'def Z2. by ZCR0. Qed.
Lemma Z2_02'': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X mj c) = (Z' ij a1 b ^^ X kl a2) ^^ (X mj c).
ZCR0. by rewrite -?GA -?X'Inv ?X'def (ZC5_swap' i j) // -?(XC5_swap' k l) // ?X'Inv; cancel. Qed.
Lemma Z2_02''': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X mi c) = (Z' ij a1 b ^^ X kl a2) ^^ (X mi c).
ZCR0. by rewrite -?GA -?X'Inv ?X'def (ZC5_swap' i j) // -?(XC5_swap' k l) // ?X'Inv; cancel. Qed.
Lemma Z2_03: (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X km c) = (Z' ij a1 b ^^ X kl a2) ^^ (X km c).
ZCR0. rewrite ?X'zero X'def; cancel. rewrite Z2. by ZCR0. Qed.
Lemma Z2_03': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X lm c) = (Z' ij a1 b ^^ X kl a2) ^^ (X lm c).
ZCR0. rewrite ?X'zero X'def -?GA; cancel. do 2 rewrite ZC5_swap' //.
by rewrite (XC4'_swap' k l m) // ?X0 ?X0' ?inv_l' ?X'zero ?IdG. Qed.
Lemma Z2_03'': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X mk c) = (Z' ij a1 b ^^ X kl a2) ^^ (X mk c).
ZCR0. rewrite ?X'zero X'def -?GA; cancel. do 2 rewrite ZC5_swap' //.
by rewrite (XC4_swap' k l m) // ?X0 ?X0' inv_r' inv_l' ?X'zero ?IdG. Qed.
Lemma Z2_03''': (X' kl (-_a2) .* Z' ij a1 b .* X' kl a2) ^^ (X ml c) = (Z' ij a1 b ^^ X kl a2) ^^ (X ml c).
ZCR0. rewrite ?X'zero X'def -?GA; cancel. by rewrite (ZC5_swap' i j) // X0 inv_l' X'zero IdG. Qed.
(* Preservation of Z2 (ZC4 flavour) *)
(* no interaction -- simplest case *)
Lemma Z2_ZC4_00: (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X lm c = Z' ij a b ^^ X kj a1 ^^ X lm c.
ZCR0. by rewrite ?X'zero X'def GA ZC4_swap -?GA X0 inv_l' X'zero IdG; rsimpl. Qed.
(* 1 -- k *)
Lemma Z2_ZC4_01: (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X kl c = Z' ij a b ^^ X kj a1 ^^ X kl c.
ZCR0. rewrite ?X'zero ?X'def; cancel. by rewrite GA ZC4_swap -?GA X0 inv_l' X'zero IdG; rsimpl. Qed.
Lemma Z2_ZC4_01': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X lk c = Z' ij a b ^^ X kj a1 ^^ X lk c.
ZCR0. rewrite ?X'zero ?X'def; cancel. rewrite -?GA ZC4_swap' ZC4_swap'; rsimpl; bite.
rewrite XC4_swap // X0' inv_r' X'zero GId. rewrite (XC4_swap' l j k) //.
by rewrite (XC5_swap' l i k j) // X0 inv_l' X'zero IdG XC5_swap'. Qed.
Lemma Z2_ZC4_01'': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X il c = Z' ij a b ^^ X kj a1 ^^ X il c.
ZCR0. rewrite ?X'zero ?X'def -?GA; cancel.
rewrite ZC4_swap'; bite. rewrite (XC5_swap' i l k j) //. rewrite (ZC3'_swap' j l) //; rsimpl.
rewrite X0 inv_l' ?X'zero GId IdG X'def. rsimpl; bite.
rewrite ZC3'_swap' //; rsimpl; rewrite ?X'zero XC5_swap // X'def GId; bite.
rewrite XC5_swap' //; bite. rewrite XC4_swap // ZC3'_swap' // X'def; rsimpl. bite.
rewrite X'zero GId XC4'_swap // X0'; rsimpl.
by rewrite inv_l' X'zero GId. Qed.
Lemma Z2_ZC4_01''': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X li c = Z' ij a b ^^ X kj a1 ^^ X li c.
ZCR0. rewrite ?X'zero ?X'def -?GA; cancel.
rewrite ZC4_swap'; bite. rewrite (XC4_swap' l j k) // (XC5_swap' l j) // (XC4_swap' l j k) //; bite.
rewrite (XC4'_swap' k i j) // X0' (XC5_swap' l i) // X0 -plus_assoc' inv_l' plus_0_l'.
by rewrite XC4_swap' // XC4'_swap //; rsimpl. Qed.
Lemma Z2_ZC4_01'''': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X jl c = Z' ij a b ^^ X kj a1 ^^ X jl c.
ZCR0. rewrite ?X'zero ?X'def -?GA; cancel.
rewrite ZC5_swap' //. rewrite ZC4_swap'. bite. rewrite (XC4'_swap' k i j) // X0'.
rewrite (XC4_swap' i l k) // (XC5_swap' i l) // (ZC3'_swap' i l) // ?X'def; bite.
rewrite X0' (XC4'_swap' k l j) //. rewrite (ZC3'_swap' j l k) //. rsimpl.
rewrite X'zero GId X'def X0' -plus_assoc' inv_l' plus_0_l'.
rewrite (XC4_swap' j l k) // X0'. rewrite (XC5_swap' j l k i) //.
rewrite (XC4_swap' j l k) //. bite. rewrite (XC4'_swap' k i l) // X0'.
rewrite (XC4'_swap' k j l) // X0. rewrite (XC4'_swap k i l) //.
rewrite (XC4'_swap' k i j) //. bite. rewrite -?plus_assoc'.
rewrite (plus_assoc' (-_(a1 _*c))) (plus_comm' _ (a1 _* c)) -plus_assoc' inv_l' plus_0_l'.
rsimpl. rewrite -inv_mul' -dist_r''. rewrite -inv_mul''. rewrite -dist_r'.
rsimpl. by rewrite -inv_mul' -dist_r'' plus_assoc' inv_r' plus_0_r'. Qed.
Lemma Z2_ZC4_01''''': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X lj c = Z' ij a b ^^ X kj a1 ^^ X lj c.
ZCR0. rewrite ?X'zero ?X'def -?GA; cancel.
rewrite ZC4_swap'. bite.
rewrite (XC4'_swap' k i j) // X0'.
rewrite (XC4_swap' l j k) //.
rewrite (XC5_swap' l i k j) // X0 -plus_assoc' inv_l' plus_0_l'.
rewrite (XC5_swap' l j k i) //. bite.
rewrite (XC4_swap' l i) //. bite.
by rewrite (XC4'_swap k j) //; rsimpl. Qed.
(* ijk *)
(* OBSTACLE caused by stumbling upon Z ij ^ X ij *)
Lemma Z2_ZC4_02: (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X ij c = Z' ij a b ^^ X kj a1 ^^ X ij c.
ZCR0. rewrite ?X'zero ?X'def -?GA; cancel. Abort.
Lemma Z2_ZC4_02': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X ji c = Z' ij a b ^^ X kj a1 ^^ X ji c.
ZCR0. rewrite ?X'zero ?X'def -?GA; cancel. rewrite ZC3'_swap' //. rewrite ZC4_swap' //. bite.
rewrite ?X0' ?X0. rewrite (XC4'_swap' k j i) // ?X0'. rewrite (XC4'_swap' k j i) // ?X0 ?X0'.
rsimpl. rewrite -?plus_assoc' inv_l' plus_0_l'. collect.
rewrite -?inv_mul'. rewrite -dist_r'' (plus_comm b) (dist_l' a1).
rewrite -?inv_mul''. rewrite -dist_r'. rsimpl. rewrite -plus_assoc'.
rewrite inv_l' plus_0_l'. bite. rewrite pIp dist_r'.
by rewrite -?plus_assoc' (plus_assoc' _ a1) inv_l' plus_0_l'. Qed.
Lemma Z2_ZC4_02'': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X kj c = Z' ij a b ^^ X kj a1 ^^ X kj c.
ZCR0. rewrite ?XC1 ?X'zero ?X'def -?GA. ZCR0.
rewrite ZC4_swap'. bite. rewrite ?X0' XC4'_swap // X0' (plus_comm' _ a1) -plus_assoc' inv_l' plus_0_l'.
rewrite ?(XC4'_swap' k j i) ?X0' ?X0 //. rewrite plus_comm'. rsimpl. bite. by rewrite plus_comm'. Qed.
Lemma Z2_ZC4_02''': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X ki c = Z' ij a b ^^ X kj a1 ^^ X ki c.
ZCR0. rewrite ?XC1 ?X'zero ?X'def -?GA. ZCR0.
rewrite ZC4_swap'. bite. rewrite ?X0' XC4'_swap // X0' (plus_comm' _ a1) -plus_assoc' inv_l' plus_0_l'.
rewrite ?(XC4'_swap' k j i) ?X0' ?X0 //. rewrite plus_comm'. rsimpl. bite. by rewrite plus_comm'. Qed.
(* OBSTACLE - Nontrivial relation *)
Lemma Z2_ZC4_02'''': (X' kj (-_a1) .* Z' ij a b .* X' kj a1) ^^ X ik c = Z' ij a b ^^ X kj a1 ^^ X ik c.
ZCR0. rewrite ?XC1 ?X'zero ?X'def -?GA GId.
Abort.
Lemma Z2_ZC4_20: (X' ik (-_ a1) .* Z' ij a b .* X' ik a1) ^^ X jk c = Z' ij a b ^^ X ik a1 ^^ X jk c.
ZCR0. rewrite ?XC1 ?X'zero ?X'def -?GA ?GId. ZCR0. bite.
rewrite ZC4'_swap' //; rsimpl; rewrite ?X'def; bite. (* This is easy *) Admitted.
Lemma Z2_ZC4_21: (X' ik (-_ a1) .* Z' ij a b .* X' ik a1) ^^ X kj c = Z' ij a b ^^ X ik a1 ^^ X kj c.
ZCR0. rewrite ?XC1 ?X'zero ?X'def -?GA GId. Abort.
(* Preservation of Z2 (ZC2 flavour) *)
Lemma Z2_06: (X' ji (-_a2) .* Z' ij a1 b .* X' ji a2) ^^ (X ji c) = (Z' ij a1 b ^^ X ji a2) ^^ (X ji c).
ZCR0. by rewrite ?XC1 Z2 ZC2 {1}plus_assoc (plus_comm c) -plus_assoc. Qed.
(* OBSTACLE - The only nontrivial case *)
Lemma Z2_06': (X' ji (-_a2) .* Z' ij a1 b .* X' ji a2) ^^ (X ij c) = (Z' ij a1 b ^^ X ji a2) ^^ (X ij c).
ZCR0. Abort.
Lemma Z2_07: (X' ji (-_a2) .* Z' ij a1 b .* X' ji a2) ^^ (X ik c) = (Z' ij a1 b ^^ X ji a2) ^^ (X ik c).
ZCR0. rewrite ?X'zero ?IdG ?X'def -?GA. rexpand.
rewrite -?X0. rewrite (XC4'_swap' j i k) //.
rewrite X0 plus_comm' -X0. bite. apply (GCr (X' ji (-_a2))).
rewrite ?GA (Gswap (Z' ij _ _) (X' ji (-_ a2))) /conj -X'Inv Z2.
rewrite ZC2 plus_assoc; rsimpl. rewrite ?X'Inv. cancel.
rewrite inv_r' plus_0_r -?X'Inv -?GA.
rewrite ZC3_swap' //. bite. rewrite ZC3'_swap' ?X'def //. rsimpl.
rewrite X'zero GId. rewrite ?mul_assoc'''. bite.
rewrite (XC4'_swap' j i k) //. rewrite ?(XC4_swap' i k j) // ?X'Inv. cancel.
rsimpl. cancel. rewrite -?X'Inv.
rewrite XC4'_swap // X0'. rewrite -inv_mul' -dist_r'' dist_r'. rsimpl.
rewrite -plus_assoc' inv_l' plus_0_l'.
rewrite ZC3'_swap' // X'def. rsimpl. rewrite X'zero. bite.
rewrite GId. rewrite XC4'_swap' //.
rewrite ?X0 XC4'_swap //. rewrite plus_comm' -?plus_assoc'. rsimpl.
by rewrite inv_r' plus_0_l'. Qed.
Lemma Z2_07': (X' ji (-_a2) .* Z' ij a1 b .* X' ji a2) ^^ (X jk c) = (Z' ij a1 b ^^ X ji a2) ^^ (X jk c).
ZCR0. rewrite ?X'zero ?IdG ?X'def -?GA. rexpand.
apply (GCr (X' ji (-_a2))). rewrite ?X'Inv. cancel.
rewrite -X'Inv. rewrite ?GA (Gswap (Z' ij _ _) (X' ji (-_ a2))) /conj -?X'Inv Z2.
rewrite ZC2 plus_assoc -inI inv_r plus_0_r -?GA. bite.
rewrite ZC3'_swap' //. rsimpl. rewrite X'def X'zero GId. bite.
rewrite (XC4'_swap j k) //. rewrite X0' plus_assoc'. rsimpl. by rewrite inv_l' plus_0_r'. Qed.
Lemma Z2_07'': (X' ji (-_a2) .* Z' ij a1 b .* X' ji a2) ^^ (X ki c) = (Z' ij a1 b ^^ X ji a2) ^^ (X ki c).
Admitted. (* Same as for Z2_07' *)
Lemma Z2_07''': (X' ji (-_a2) .* Z' ij a1 b .* X' ji a2) ^^ (X kj c) = (Z' ij a1 b ^^ X ji a2) ^^ (X kj c).
Admitted. (* Same as for Z2_07 *)
(* Preservation of Z2 (ZC2 flavour) *)
(* OBSTACLE -- But similar to one of above *)
Lemma Z2_10: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X ij c) = (Z' ij a1 b ^^ X jk a2) ^^ (X ij c).
Abort.
Lemma Z2_11: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X ji c) = (Z' ij a1 b ^^ X jk a2) ^^ (X ji c).
ZCR0. rsimpl. rewrite ?X'zero ?IdG ?X'def -?GA.
rewrite ZC3_swap' //. rsimpl. bite. rewrite ?X0. collect.
rewrite ?dist_r'. rsimpl. rewrite -plus_assoc' inv_l' plus_0_l' pIp.
by collect. Qed.
Lemma Z2_12: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X jk c) = (Z' ij a1 b ^^ X jk a2) ^^ (X jk c).
ZCR0. rewrite ?XC1. ZCR0. (* easy *) Admitted.
(* OBSTACLE -- But similar to one of above -- RANK 2 NOT REALLY AN OBSTACLE*)
Lemma Z2_13: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X kj c) = (Z' ij a1 b ^^ X jk a2) ^^ (X kj c).
Abort.
Lemma Z2_14: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X ki c) = (Z' ij a1 b ^^ X jk a2) ^^ (X ki c).
Abort.
Lemma Z2_15: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X ik c) = (Z' ij a1 b ^^ X jk a2) ^^ (X ik c).
Abort.
Lemma Z2_16: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X il c) = (Z' ij a1 b ^^ X jk a2) ^^ (X il c).
Abort.
Lemma Z2_17: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X li c) = (Z' ij a1 b ^^ X jk a2) ^^ (X li c).
Abort.
Lemma Z2_18: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X jl c) = (Z' ij a1 b ^^ X jk a2) ^^ (X jl c).
Abort.
Lemma Z2_19: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X lj c) = (Z' ij a1 b ^^ X jk a2) ^^ (X lj c).
Abort.
Lemma Z2_20: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X kl c) = (Z' ij a1 b ^^ X jk a2) ^^ (X kl c).
Abort.
Lemma Z2_21: (X' jk (-_a2) .* Z' ij a1 b .* X' jk a2) ^^ (X lk c) = (Z' ij a1 b ^^ X jk a2) ^^ (X lk c).
Abort.
End Z2_ZC.
Lemma Z3R: forall i j k a b c(ij : i!=j) (jk : j!=k) (ik : i!=k) (ki : k!=i) (kj : k!=j) (ji : j!=i),
Z' ij (b *_ a) c = (X' ji (-_ (c * b *_ a _* c)) .* X' ki (a _* c)) ^ X ik (- b) .*
(X' ij (b *_ a) .* X' kj a) ^ X jk (c * b) .*
X' kj (-_ a) .* X' ki (-_ (a _* c)). Admitted.
Section ActionCommutation1.
Context (i j k l : nat) {a a1 a2 : I} {b c d : R}
{ij : i != j} {ik : i != k} {jk : j != k} {ji : j != i} {ki : k != i} {kj : k != j}.
Lemma ACL01: (Z' ji a d ^^ X ik (b)) ^^ X ij (c) = (Z' ji a d ^^ X ij (c)) ^^ X ik (b).
ZCR. rewrite -?X'Inv. bite. rewrite X0. by collect. Qed.
Lemma ACL02: (Z' jk a d ^^ X ik (b)) ^^ X ij (c) = (Z' jk a d ^^ X ij (c)) ^^ X ik (b).
ZCR. rewrite -?X'Inv (XC4'_swap' i k j) // X0 X0' (XC4'_swap' i k j) // X0 X0'.
by do 2 (rewrite plus_comm'; bite). Qed.
Lemma ACL04 : (Z' kj a b ^^ X ik c) ^^ X jk d = (Z' kj a b ^^ X jk d) ^^ X ik c.
ZCR. by rewrite -?X'Inv X0; collect. Qed.
Lemma ACL05 : (Z' kj a b ^^ X ji c) ^^ X jk d = (Z' kj a b ^^ X jk d) ^^ X ji c.
ZCR. by rewrite -?X'Inv X0; collect. Qed.
End ActionCommutation1.
Section ActionCommutation2.
Context (i j k l : nat) {a a1 a2 : I} {b c d : R}
{ij : i != j} {ik : i != k} {jk : j != k} {ji : j != i} {ki : k != i} {kj : k != j}.
Corollary ACL01': (X' ji (a) ^^ X ik (b)) ^^ X ij (c) = (X' ji (a) ^^ X ij (c)) ^^ X ik (b).
by rewrite ACL01. Qed.
Corollary ACL02': (X' jk a ^^ X ik (b)) ^^ X ij (c) = (X' jk a ^^ X ij (c)) ^^ X ik (b).
by rewrite ACL02. Qed.
Lemma ACL03': (X' ij a ^^ X jk b) ^^ X ij c = (X' ij a ^^ X ij c) ^^ X jk b.
by ZCR. Qed.
Corollary ACL04' : (X' kj a ^^ X ik b) ^^ X jk c = (X' kj a ^^ X jk c) ^^ X ik b.
by rewrite ACL04. Qed.
Corollary ACL05' : (X' kj a ^^ X ji b) ^^ X jk c = (X' kj a ^^ X jk c) ^^ X ji b.
by rewrite ACL05. Qed.
End ActionCommutation2.
(* TODO: REFACTOR CODE THAT FOLLOWS THIS LINE *)
Section ActionCommutation3.
Context (i j k l : nat) {a a1 a2 a3 : I} {b c d : R}
{ij : i != j} {ik : i != k} {jk : j != k} {ji : j != i} {ki : k != i} {kj : k != j}.
(* Lemma Z3R'':
((X' kj a ^ X jk (-b * c)) ^ X ji b) ^ X ik (c) = (X' kj a ^ X ik c) ^ X ji b.
move: (@Z3R' i j k a (-c) b ij jk ik ki kj ji); rsimpl. move => ->. symmetry.
by rewrite {1}XC3 // 2!mul_conj -(ACL04' j i k) //
(ACL04' i j k)// -?mul_conj -(XC3 k j i) // ACL05. Qed.
Lemma Z3R''': Z' ij (b *_ a) c = ((X' kj a ^ X ji c) ^ X ik (- b)) ^ X jk (c * b) .* X' kj (-_ a) ^ X ji c.
move: (@Z3R' i j k a b c ij jk ik ki kj ji).
rewrite XC3' // XC3 // {1} mul_conj ; rsimpl.
rewrite X1. move /(GCr' ((X' kj a ^ (X ji c)) ^-1)). cancel.
move => ->. by rewrite -?conjI -?X'Inv -(XC3 k j i). Qed. *)
(* Lemma ACL1: (X' ji a1 ^^ X ik b) ^^ X ij c .* (X' ki a2 ^^ X ik b) ^^ X ij c =
(X' ji a1 ^^ X ij c) ^^ X ik b .* (X' ki a2 ^^ X ij c) ^^ X ik b.
by rewrite -?ACL01'. Qed.
Lemma ACL2: ((Z' ji a1 b) ^ X ik d) ^ X ij c .* X' kj a2 .* X' ki a3 =
((Z' ji a1 b) ^ X ij c) ^ X ik d.
intros. by rewrite 4!mul_conj ACL01// -ACL02'// -ACL01'// -?mul_conj. Qed.
Lemma ACL4': ((X' ki a1 .* X' kj a2) ^ X ik c) ^ X jk b =
((X' ki a1 .* X' kj a2) ^ X jk b) ^ X ik c.
intros. rewrite 4!mul_conj -ACL04' // -ACL04' //. Qed. *)
End ActionCommutation3.
Section ActionCommutation4.
Context (i j k l : nat) {a a1 a2 a3 : I} {b c d : R}
{ij : i != j} {ik : i != k} {jk : j != k} {ji : j != i} {ki : k != i} {kj : k != j}.
(* Lemma ACL3: (((X' ji a1 .* X' ki a2) ^^ X ik b) ^ X ij c) ^ (X ij d) =
((X' ji a1 .* X' ki a2) ^^ X ik b) ^ (X ij (c+d)).
intros.
by rewrite ACL1 // mul_conj X1 XC3// -GA ACL1 // ACL2//
(mul_conj (X ij (c+d))) X1 XC3// ?(mul_conj (X ij d))
ZC2 XC3// XC4// -2!GA X0'; collect. Qed.
Lemma ACL3': (((X' ij a1 .* X' kj a2) ^ X jk b) ^ X ij c) ^ X ij (d) =
((X' ij a1 .* X' kj a2) ^ X jk b) ^ (X ij (c+d)).
intros. rewrite 4!mul_conj; do 3 rewrite ACL03'// (XC1 _ _ k)//.
apply GCl'. rewrite X1 2!ZC4 2!mul_conj ZC4' ZC4 (XC1 _ _ k)//; rsimpl.
by rewrite ?X'zero ?IdG ?X'def -2!GA XC4'_swap'//
X0' XC4'_swap// X0' XC4'_swap; collect. Qed. *)
End ActionCommutation4.
Section ActionCorrectness.
Context (i j k l : nat) {a a1 a2 a3 : I} {b c d : R}
{ij : i != j} {ik : i != k} {jk : j != k} {ji : j != i} {ki : k != i} {kj : k != j}.
Lemma ActionLemma1:
(Z' ij a b ^^ X ij c) ^^ X ij d = Z' ij a b ^^ X ij (c+d).
rewrite ?(ZC1 _ _ k) //. ZCR. rewrite -?X'Inv -?Z'Inv. rsimpl.
rewrite ?X0' ?X0. collect. bite.
intros. rewrite -(mul_1_l' a) (Z3R _ _ k); rsimpl.
rewrite 3!(mul_conj (X ij c)) 3!(mul_conj (X ij d)) 3!(mul_conj (X ij (c+d))).
rewrite ACL3 // ACL3' //.
replace conj with (locked conj); [|by rewrite -lock].
rewrite ?GA. do 2 apply GCl'. rewrite -?lock.
by (do 3 rewrite ?XC3 // ?XC4 // ?mul_conj -GA ?X0'); collect. Qed.
End ActionCorrectness.
Theorem ActionProperty1 i j k l (ij : i != j) (kl : k != l) a b c d:
(Z' ij a b ^ X kl c) ^ X kl d = Z' ij a b ^ X kl (c + d).
case: (eqneqP i k) => [/eqP|] ik; subst; [rename ij into kj|];
(case: (eqneqP j l) => [/eqP|] jl; subst; [try rename kj into kl'; try rename ij into il|]).
+ rewrite (irrelev kl' kl). move: (fresh2 k l) => [] s [] sk sl.
set (ks := swap_neq sk); set (ls := swap_neq sl); set (lk := swap_neq kl).
by rewrite (ActionLemma1 k l s).
+ set (lk := swap_neq kl); set (jk := swap_neq kj); set (lj := swap_neq jl).
by rewrite ?ZC4' 2!mul_conj XC4// (XC1 _ _ j) // ZC4' -2!GA
(XC4_swap' k l j) // X0 X0'; collect.
+ set (lk := swap_neq kl); set (ki := swap_neq ik); set (li := swap_neq il).
by rewrite ?ZC4 2!mul_conj XC4'// (XC1 _ _ i) // ZC4 -2!GA
(XC4'_swap' k l i) // X0 X0'; collect.
+ case: (eqneqP j k) => [/eqP|] jk; subst; [|];
(case: (eqneqP i l) => [/eqP|] il; subst; [|]).
* clear jl. rewrite (irrelev ij ik). clear ij. rename ik into lk.
by rewrite ?ZC2 plus_assoc.
* rewrite (irrelev ij ik). clear ij. clear jl.
set (lk := swap_neq kl); set (ki := swap_neq ik); set (li := swap_neq il).
by rewrite ?ZC3 // 2!mul_conj (XC1 _ _ i)// XC4 // ZC3//
-2!GA (XC4_swap' i l k) // X0 X0'; collect.
* rename ij into lj. rename ik into lk. set (kj := swap_neq jk).
by rewrite ?ZC3' // 2!mul_conj (XC1 _ _ j)// XC4' // ZC3'//
-2!GA (XC4'_swap' k j l) // X0 X0'; collect.
* by rewrite ?ZC5. Qed.
(* TODO: Fix this error *)
Lemma Z0Lemma k i j a1 a2 b (ij : i!=j) (jk : j!=k) (ki : k!=i) (ji : j!=i) (kj : k!=j) (ik :i!=k):
Z' ij (a1 _+_ a2) b = Z' ij a1 b .* Z' ij a2 b.
rewrite -(mul_1_l' (a1 _+_ a2)) -{2}(mul_1_l' a1) -{2}(mul_1_l' a2) ?(Z3R''' _ _ k)//.
rsimpl. rewrite -{1}X0 3!mul_conj. cancel_l.
rewrite inv_plus' -X0 mul_conj -GA. apply GCr'.
move: (@Z3R' i j k (a2) (1) b ij jk ik ki kj ji); rsimpl; move => <-.
rewrite -?mul_conj. apply conj_eq. rewrite ?XC3' //; rsimpl.
by rewrite XC4_swap // XC4_swap' // -GA ?X0 plus_comm'. Qed.
Theorem CorrZ0 i j k l (ij : i!=j) (kl : k!=l) a b c d:
Z' ij (a _+_ b) c ^ X kl d = Z' ij a c ^ X kl d .* Z' ij b c ^ X kl d.
case: (eqneqP i k) => [/eqP|] ik; subst; [rename ij into kj|];
(case: (eqneqP j l) => [/eqP|] jl; subst; [try rename kj into kl'; try rename ij into il|]);
try rewrite (irrelev kl' kl) {kl'}.
+ move: (fresh2 k l) => [] s [] sk sl.
set (ls := swap_neq sl); set (ks := swap_neq sk); set (lk := swap_neq kl).
admit.
+ set (lk := swap_neq kl); set (jk := swap_neq kj); set (lj := swap_neq jl).
by rewrite Z0_ZC4'.
+ set (lk := swap_neq kl); set (ki := swap_neq ik); set (li := swap_neq il).
by rewrite Z0_ZC4.
+ case: (eqneqP j k) => [/eqP|] jk; subst; [|];
(case: (eqneqP i l) => [/eqP|] il; subst; [|]).
* clear ik; rename ij into lk; clear jl.
by rewrite Z0_ZC2.
* clear ik; clear jl. rename ij into ik.
set (lk := swap_neq kl); set (ki := swap_neq ik); set (li := swap_neq il).
by rewrite Z0_ZC3.
* rename ij into lj. rename ik into lk. set (kj := swap_neq jk).
by rewrite Z0_ZC3'.
* rewrite Z0_ZC5 //. Qed.