-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathident3.v
460 lines (347 loc) · 19.1 KB
/
ident3.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
Require Import ssreflect ssrnat ssrbool seq eqtype Ring Group.
Import Ring.RingFacts.
Lemma swap_neq {i j : nat}: i != j -> j != i. by rewrite eq_sym. Qed.
Axiom fresh2: forall (i j : nat), exists k, k!=i /\ k!=j.
Axiom fresh3: forall (i j k : nat), exists l, l!=i /\ l!=j /\ l!=k.
Parameter ZZZ : Type.
Parameter X : forall {i j : nat} (ij : i!=j) (x : R), ZZZ.
(* Custom 'pseudo'-conjugation *)
Parameter conj1 : ZZ -> ZZZ -> ZZ.
Axiom forward_rule: forall h1 h2 g, conj1 (h1 .* h2) g = (conj1 h1 g) .* (conj1 h2 g).
Axiom identity_rule: forall h, conj1 Id h = Id.
Notation "h ^^ g" := (conj1 h g) (at level 11, left associativity).
Parameter Z': forall {i j : nat} (p : i != j) (a r : R), ZZ.
Definition X' {i j : nat} (p : i != j) r := Z' p r (0).
Section Main.
Context (i j k l : nat) (a a1 a2 b c : R).
Axiom ZC1: forall (ij : i!=j) (jk : j!=k) (ik : i!=k) (ji : j!=i) (kj : k!=j) (ki : k!=i),
Z' ij a b ^^ X ij c =
X' ki (a * b) .*
X' kj (a * (b * c + 1)) .*
X' kj (- (a * (b * c + 1))) ^^ X jk (- b) ^^ X ik (c * b + 1) .*
X' ki (- (a * b)) ^^ X jk (- b) ^^ X ik (c * b + 1).
Axiom ZC2: forall (ij : i != j) (ji : j != i),
(Z' ij a b) ^^ (X ji c) = Z' ij a (b + c).
Axiom ZC3: forall (ij : i != j) (jk : j != k) (ik : i != k) (ki : k != i) (ik : i != k),
(Z' ij a b) ^^ (X jk c) = X' jk (- (b * a * c)) .* X' ik (a * c) .* Z' ij a b.
(* Unsure about this one *)
Axiom ZC3': forall (ij : i != j) (ik : i != k) (ki : k != i) (kj: k != j),
(Z' ij a b) ^^ (X ki c) = X' ki (- (c * a * b)) .* X' kj (-(c * a)) .* Z' ij a b.
Axiom ZC4: forall (ij : i!=j) (kj : k!=j) (ki : k!=i),
(Z' ij a b) ^^ (X kj c) = X' ki (c * b * a * b) .* X' kj (c * b * a) .* Z' ij a b.
Axiom ZC4': forall (ij : i!=j) (jk : j!=k) (ik : i!=k),
(Z' ij a b) ^^ (X ik c) = X' jk (- (b * a * b * c)) .* X' ik (a * b * c) .* Z' ij a b.
Axiom ZC5: forall (ij : i!=j) (jk : j!=k) (ik : i!=k) (il : i!=l) (jl : j!=l) (kl : k!=l),
(Z' ij a b) ^^ (X kl c) = Z' ij a b.
(* Identites for Relative Steinberg group *)
Axiom Z0: forall (ij : i!=j), Z' ij (a1 + a2) b = Z' ij a1 b .* Z' ij a2 b.
Axiom Z1: forall (ij : i!=j) (ji : j!=i),
X' ji (- a2) .* Z' ij a1 b ^^ X ij c .* X' ij a2 = Z' ij a1 b ^^ (X ij (c+a2)).
Axiom Z2: forall (ij : i!=j) (ji : j!=i),
Z' ji (- a2) c .* Z' ij a1 b ^^ X ij c .* Z' ji a2 c = Z' ij a1 (b + a2) ^^ X ij c.
Axiom Z3: forall (ij : i!=j) (kj : k!=j) (jk : j!=k) (ik : i!=k),
X' jk (- a2) .* Z' ij a1 b .* X' jk a2 = Z' ij a1 b ^^ X jk a2.
Axiom Z3': forall (ij : i!=j) (jk : j!=k) (ik : i!=k) (ki : k!=i),
X' ki (- a2) .* Z' ij a1 b .* X' ki a2 = Z' ij a1 b ^^ X ki a2.
Axiom Z4: forall (ij : i!=j) (kj : k!=j) (ik : i!=k),
X' kj (- a2) .* Z' ij a1 b .* X' kj a2 = Z' ij a1 b ^^ X kj a2.
Axiom Z4': forall (ij : i!=j) (kj : k!=j) (ik : i!=k),
X' ik (- a2) .* Z' ij a1 b .* X' ik a2= Z' ij a1 b ^^ X ik a2.
Axiom Z5: forall (ij : i!=j) (kl : k!=l), i!=k -> i!=l -> j!=k -> j!=l ->
Z' kl a1 b .* Z' ij a2 c = Z' ij a2 c .* Z' kl a1 b.
Axiom PR: forall (ij : i!=j) (ji : j!=i) (kj : k!=j) (jk : j!=k) (ik : i!=k) (ki : k!=i),
(X' kj a ^^ X ik (- b)) ^^ X ji c =
((X' kj a ^^ X ji c) ^^ X ik (- b)) ^^ X jk (c * b).
End Main.
Section BasicCorollaries.
Context (i j : nat) (a : R) (ij : i!=j).
Lemma Z'zero: forall b, Z' ij 0 b = Id.
intros. apply (GCr (Z' ij 0 b)).
Proof. rewrite -Z0. by rewrite IdG; rsimpl. Qed.
Lemma Z'Inv: forall b, Z' ij (-a) b = (Z' ij a b)^-1.
Proof. intros. apply (GCr (Z' ij a b)). by rewrite -Z0 inv_l IG Z'zero. Qed.
Lemma X'def: Z' ij a 0 = X' ij a.
Proof. done. Qed.
Lemma X'zero: X' ij 0 = Id.
Proof. by rewrite /X' Z'zero. Qed.
Lemma X'Inv: X' ij (-a) = (X' ij a)^-1.
Proof. by rewrite /X' Z'Inv. Qed.
End BasicCorollaries.
Ltac simplify0 := rsimpl; rewrite ?X'zero ?X'def ?forward_rule ?identity_rule -?GA; cancel.
Section XC_Corollaries.
(* Computation rules for simpler generators X_ij *)
Ltac XC E := rewrite /X' E; simplify0.
Context (i j k l : nat)
{ij : i != j} {ji : j != i}
{ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}
{kl : k != l} {il : i != l} {jl : j != l} {lk : l != k} {li : l != i} {lj : l != j}.
Lemma X0' a1 a2 g: g .* X' ij (a1 + a2) = g .* X' ij a1 .* X' ij a2 .
Lemma X0 a1 a2: X' ij (a1 + a2) = X' ij a1 .* X' ij a2 .
Lemma XC2 a b: X' ij a ^^ X ji b = Z' ij a b.
Lemma XC3 a c: (X' ij a) ^^ (X jk c) = X' ik (a * c) .* X' ij a.
Lemma XC3' a c: (X' ij a) ^^ (X ki c) = X' kj (-(c * a)) .* X' ij a.
Lemma XC4 a c: (X' ij a) ^^ (X kj c) = X' ij a.
Lemma XC4' a c: (X' ij a) ^^ (X ik c) = X' ij a.
Lemma XC5 a c: (X' ij a) ^^ (X kl c) = X' ij a.
by XC ZC5. Qed. by XC ZC4'. Qed.
by XC ZC4. Qed. by XC ZC3'. Qed.
by XC ZC3. Qed. by XC (@ZC2 i j a 0 b ij ji). Qed.
by XC Z0. Qed. by rewrite GA X0. Qed.
End XC_Corollaries.
Lemma XC1 i j (ij : i!=j) a c: X' ij a ^^ X ij c = X' ij a.
move: (fresh2 i j) => [] m [] mi mj.
move: (swap_neq mi) (swap_neq mj) (swap_neq ij) => im jm ji.
rewrite /X' (ZC1 i j m) //; simplify0.
rewrite ZC2 plus_0_r X'def ZC3' //; simplify0.
move: (@Z4 i j m a (-a) 0 ij mj im); simplify0.
by rewrite XC4. Qed.
Module ZC_tactic.
Ltac Z_guard :=
match goal with
| [ |- is_true (negb (eq_op ?X ?X)) ] => fail 1
| [ |- is_true (negb (eq_op ?X ?Y)) ] => done
| [ |- _ ] => idtac
end.
Ltac safe_rw E := try (rewrite E; Z_guard).
Tactic Notation "safe_rw4"
reference(F1) "," reference(F2) "," reference(F3) "," reference(F4) :=
safe_rw F1; safe_rw F2; safe_rw F3; safe_rw F4.
Ltac ZC := safe_rw4 XC2, ZC2, XC3, ZC3;
safe_rw4 XC3', ZC3', XC4, ZC4;
safe_rw4 XC4', ZC4', XC5, ZC5;
safe_rw XC1; rewrite ?forward_rule ?identity_rule; rsimpl; cancel.
Ltac ZCR := repeat ZC.
End ZC_tactic.
Section AxiomsExpanded. Import ZC_tactic.
Context (i j k l : nat) (a a1 a2 b c : R)
{ij : i != j} {ji : j != i}
{ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}
{kl : k != l} {il : i != l} {jl : j != l} {lk : l != k} {li : l != i} {lj : l != j}.
Lemma PRFS:
Z' ij (b * a) c .* X' ki (a * c) .* X' kj a =
X' jk (c * b * a * c * b) .* X' ji (- (c * b * a * c)) .* Z' ki (a * c) (- b)
.* X' ik (b * a * c * b) .* X' ij (b * a) .* Z' kj a (c * b).
(* move: (PR i j k a b c ij ji kj jk ik ki). by ZCR; simplify0. Qed. *) Admitted.
Lemma Z3FS:
X' jk (- a2) .* Z' ij a1 b .* X' jk a2 =
X' jk (- (b * a1 * a2)) .* X' ik (a1 * a2) .* Z' ij a1 b.
move: (Z3 i j k a1 a2 b ij kj jk ik). by ZCR; simplify0. Qed.
Lemma Z3'FS:
X' ki (- a2) .* Z' ij a1 b .* X' ki a2 =
X' ki (- (a2 * a1 * b)) .* X' kj (- (a2 * a1)) .* Z' ij a1 b.
move: (Z3' i j k a1 a2 b ij jk ik ki). by ZCR; simplify0. Qed.
Lemma Z4FS:
X' kj (- a2) .* Z' ij a1 b .* X' kj a2 =
X' ki (a2 * b * a1 * b) .* X' kj (a2 * b * a1) .* Z' ij a1 b.
move: (Z4 i j k a1 a2 b ij kj ik). by ZCR; simplify0. Qed.
Lemma Z4'FS:
X' ik (- a2) .* Z' ij a1 b .* X' ik a2 =
X' jk (- (b * a1 * b * a2)) .* X' ik (a1 * b * a2) .* Z' ij a1 b.
move: (Z4' i j k a1 a2 b ij kj ik). by ZCR; simplify0. Qed.
End AxiomsExpanded.
Section Swap. Import ZC_tactic.
Corollary Z4_swap i j k a a1 b {ij : i != j} {ji : j != i} {ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}:
Z' ij a b .* X' kj a1 = X' kj a1 .* X' ki (a1 * b * a * b) .* X' kj (a1 * b * a) .* Z' ij a b.
by move: (@Z4 i j k a a1 b ij kj ik); ZCR; simplify0; move /(GCl' (X' kj a1)); rewrite -?GA X'Inv GI IdG. Qed.
Corollary Z4'_swap i j k a a1 b {ij : i != j} {ji : j != i} {ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}:
Z' ij a b .* X' ik a1 = X' ik (a1 + a * b * a1) .* X' jk (-(b * a * b * a1)) .* Z' ij a b.
move: (@Z4' i j k a a1 b ij kj ik); ZCR; simplify0; move /(GCl' (X' ik a1)); rewrite -?GA X'Inv GI IdG X0 => ->.
by bite; rewrite Z4_swap //; simplify0. Qed.
Corollary Z3_swap i j k a a1 b {ij : i != j} {ji : j != i} {ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}:
Z' ij a b .* X' jk (a1) = X' jk ((1 - b * a) * a1) .* X' ik ((a * a1)) .* Z' ij a b.
move: (@Z3 i j k a (a1) b ij kj jk ik); ZCR; simplify0.
move /(GCl' (X' jk (a1))). rewrite X'Inv -?GA GI IdG -X0 dist_r. by rsimpl. Qed.
Corollary Z3_swap_l i j k (a a1 b : R) {ij : i != j} {ji : j != i} {ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}:
X' jk (a1) .* Z' ij a b = Z' ij a b .* X' ik (- (a * a1)) .* X' jk ((1 + b * a) * a1).
move: (@Z3_swap i j k (-a) (-a1) b ij ji ik jk ki kj).
rewrite ?inv_mul ?mul_inv ?Z'Inv ?X'Inv -?GIM => /eqI; rsimpl.
by rewrite -?X'Inv -?Z'Inv -?GA. Qed.
Corollary Z3'_swap i j k a a1 b {ij : i != j} {ji : j != i} {ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}:
Z' ij a b .* X' ki a1 = X' ki (a1 * (1 - a * b)) .* X' kj (- (a1 * a)) .* Z' ij a b.
move: (@Z3' i j k a a1 b ij jk ik ki). ZCR; simplify0.
move /(GCl' (X' ki a1)). by rewrite X'Inv -?GA GI IdG -X0 dist_l; rsimpl. Qed.
Context (i j k l : nat) (a a1 a2 b c : R)
{ij : i != j} {ji : j != i}
{ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}
{kl : k != l} {il : i != l} {jl : j != l} {lk : l != k} {li : l != i} {lj : l != j}.
Corollary X4_swap: (X' ij a1) .* (X' kj a) = (X' kj a) .* (X' ij a1).
by rewrite Z4_swap //; simplify0. Qed.
Corollary X4'_swap: (X' ij a1) .* (X' ik a2) = (X' ik a2) .* (X' ij a1).
by rewrite Z4'_swap //; simplify0. Qed.
Corollary X5_swap: (X' ij a1) .* (X' kl a2) = (X' kl a2) .* (X' ij a1).
by rewrite Z5. Qed.
(* Prime corollaries *)
Corollary X4_swap' g: g.* X' ij a1 .* X' kj a = g .* X' kj a .* X' ij a1.
by rewrite GA X4_swap -?GA. Qed.
Corollary X4'_swap' g: g .* X' ij a1 .* X' ik a2 = g .* X' ik a2 .* X' ij a1.
by rewrite GA X4'_swap -?GA. Qed.
Corollary X5_swap' g: g .* X' ij a1 .* X' kl a2 = g .* X' kl a2 .* X' ij a1.
by rewrite GA X5_swap -?GA. Qed.
Corollary Z3_swap' g:
g .* Z' ij a b .* X' jk a1 = g .* X' jk ((1 - b * a) * a1) .* X' ik ((a * a1)) .* Z' ij a b.
by rewrite GA Z3_swap -?GA. Qed.
Corollary Z3_swap'_l g:
g .* X' jk (a1) .* Z' ij a b = g .* Z' ij a b .* X' ik (- (a * a1)) .* X' jk ((1 + b * a) * a1).
by rewrite GA Z3_swap_l -?GA. Qed.
Corollary Z3'_swap' g:
g .* Z' ij a b .* X' ki a1 = g .* X' ki (a1 * (1 - a * b)) .* X' kj (- (a1 * a)) .* Z' ij a b.
by rewrite GA Z3'_swap -?GA. Qed.
Corollary Z4_swap' g:
g .* Z' ij a b .* X' kj a1 =
g .* X' kj a1 .* X' ki (a1 * b * a * b) .* X' kj (a1 * b * a) .* Z' ij a b.
by rewrite GA Z4_swap -?GA. Qed.
Corollary Z4'_swap' g:
g .* Z' ij a b .* X' ik a1 =
g .* X' ik (a1 + a * b * a1) .* X' jk (-(b * a * b * a1)) .* Z' ij a b.
by rewrite GA Z4'_swap -?GA. Qed.
Corollary Z5' g: g.* Z' kl a1 b .* Z' ij a2 c = g .* Z' ij a2 c .* Z' kl a1 b.
by rewrite 2!GA Z5. Qed.
End Swap.
Section Z5_Untangle. Import ZC_tactic.
(* Z5_02_01 Uses assumption rkФ >= 4*)
Context (i j k l m n : nat) (a1 a2 b c d : R)
{ij : i != j} {ji : j != i}
{ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}
{kl : k != l} {il : i != l} {jl : j != l} {lk : l != k} {li : l != i} {lj : l != j}
{mi : m != i} {mj : m != j} {mk : m != k} {ml : m != l}
{im : i != m} {jm : j != m} {km : k != m} {lm : l != m}
{ni : n != i} {nj : n != j} {nk : n != k} {nl : n != l} {nm : n != m}
{in' : i != n} {jn : j != n} {kn : k != n} {ln : l != n} {mn : m != n}.
Lemma Z5_00_1: (Z' kl a1 b .* Z' ij a2 c) ^^ (X mn d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X mn d).
ZCR. by rewrite Z5. Qed.
Lemma Z5_01_1: (Z' kl a1 b .* Z' ij a2 c) ^^ (X mi d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X mi d).
ZCR. simplify0. rewrite -(Z5' i j k l) //; bite.
rewrite Z5 //; simplify0. bite. by rewrite Z5 //; simplify0. Qed.
Lemma Z5_01_2: (Z' kl a1 b .* Z' ij a2 c) ^^ (X mj d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X mj d).
ZCR. do 2 (rewrite -?GA -(Z5 k l) //; simplify0; bite). by rewrite Z5. Qed.
Lemma Z5_01_3: (Z' kl a1 b .* Z' ij a2 c) ^^ (X im d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X im d).
ZCR. do 2 (rewrite -?GA -(Z5 k l) //; simplify0; bite). by rewrite Z5. Qed.
Lemma Z5_01_4: (Z' kl a1 b .* Z' ij a2 c) ^^ (X jm d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X jm d).
ZCR. do 2 (rewrite -?GA -(Z5 k l) //; simplify0; bite). by rewrite Z5. Qed.
Lemma Z5_02_1: (Z' kl a1 b .* Z' ij a2 c) ^^ (X ij d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X ij d).
ZCR. rewrite (ZC1 _ _ m) //. ZCR. rewrite -?GA.
rewrite Z5 //; simplify0; repeat (rewrite -(Z5' k l) //; simplify0). Qed.
Lemma Z5_02_2: (Z' kl a1 b .* Z' ij a2 c) ^^ (X ji d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X ji d).
ZCR. by rewrite Z5. Qed.
Lemma Z5_02_3: (Z' kl a1 b .* Z' ij a2 c) ^^ (X ik d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X ik d).
ZCR. rewrite -?GA. rewrite Z3'_swap' // Z3'_swap' // Z5' //; simplify0. bite.
do 2 rewrite (@Z4'_swap' i j) //; simplify0; bite.
rewrite -?X0' (X5_swap' j l i k) // (X4_swap' j l i) // (X5_swap' i l j k) //
X4_swap // (X4'_swap' i k l) // (X4_swap' i k j) // -?X0' (X4'_swap' i l k) // -?X0' -?X0.
rexpand. rsimpl. bite. by rewrite -?plus_assoc (plus_comm (- _)). Qed.
Lemma Z5_02_4: (Z' kl a1 b .* Z' ij a2 c) ^^ (X il d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X il d).
ZCR. rewrite -?GA. do 2 rewrite Z4'_swap' //. do 2 rewrite (Z4_swap' k l) //.
rewrite -(Z5' i j) //; bite.
rewrite (X4_swap' j l i) // (X5_swap' j l) // (X4_swap' j l) //; rsimpl; bite.
rewrite (X4'_swap' i l k) // -?X0' (X4_swap' i l j) // (X4'_swap' i l k) //.
do 2 rewrite (X5_swap' i l j k) //.
rewrite (X4'_swap' i l k) // -?X0' -?plus_assoc (plus_comm (a2 * c * d)).
by rewrite (X4_swap' j k i) // X5_swap // -X0'. Qed.
Lemma Z5_02_5: (Z' kl a1 b .* Z' ij a2 c) ^^ (X jk d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X jk d).
ZCR. rewrite -?GA. do 2 rewrite Z3'_swap' //. do 2 rewrite Z3_swap' //.
rewrite (Z5' k l i j) //; bite.
rewrite (X4'_swap' j l k) // (X4_swap' i k j) // -?X0.
rexpand; rsimpl; rewrite -?plus_assoc (plus_comm (-(c * a2 * d))). bite.
by rewrite -2!X0 X5_swap. Qed.
Lemma Z5_02_6: (Z' kl a1 b .* Z' ij a2 c) ^^ (X jl d) = (Z' ij a2 c .* Z' kl a1 b) ^^ (X jl d).
ZCR. rewrite -?GA. rewrite Z3_swap' // Z3_swap' // (Z4_swap') // (Z4_swap' k l i) // Z5' //; rsimpl; bite.
rewrite (X5_swap' i l j k) // ?(X4'_swap' i l k) // (X4_swap' i l j) //
-X0' plus_comm X0' (X4'_swap j k l) // (X5_swap' i k j l) //; bite.
by rewrite (X4'_swap' j l k) // -X0' -X0; rexpand; rsimpl. Qed.
End Z5_Untangle.
Section ChicagoBuilding. Import ZC_tactic.
Context (i j k l m n : nat) (a1 a2 b d : R)
{ij : i != j} {ji : j != i}
{ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}
{kl : k != l} {il : i != l} {jl : j != l} {lk : l != k} {li : l != i} {lj : l != j}.
Lemma L01: (X' il a2 .* X' jk a1 .* X' il (-a2) .* X' jk (-a1)) ^^ X ki b ^^ X li d = Id.
ZCR; simplify0. rewrite ?X'zero ?GId.
rewrite (Z3'_swap' i l j a2) // (Z5' j k i l) // X'def
(Z3'_swap' i l k a2) // (Z4_swap' i l k) // Z'Inv; cancel.
rewrite (X4'_swap' k i l) // -?X0'.
rewrite (plus_comm (b*a2)) -plus_assoc inv_l plus_0_l.
rewrite (X4'_swap' k i l) // -?X0' ?dist_l plus_assoc; rsimpl.
rewrite inv_l plus_0_r (X4_swap' k i j) // (X5_swap' k l j i) //.
rewrite (X4'_swap' j k i) // (X4'_swap' j l i) // plus_comm -X0'
plus_assoc inv_r plus_0_r (Z3_swap' j k l) // X'def; rsimpl.
rewrite (X4_swap' j l k) // -X0' inv_l X'zero GId
(Z3_swap' j k i) // X'def; rsimpl.
rewrite -X0' inv_r X'zero GId
(X5_swap' k l j i) // -X0' inv_l X'zero GId
(X4_swap' j i k) // -X0' -X0 ?inv_l ?X'zero GId //. Qed.
Lemma L02: (X' ik a1 .* X' jl a2 .* X' ik (-a1) .* X' jl (-a2)) ^^ X ki b ^^ X li d = Id.
ZCR; simplify0.
rewrite (Z3'_swap' i k j a1) // (Z5' j l i k) // X'def
(Z3'_swap' i k l a1) // (Z4_swap' i k l) // Z'Inv; cancel.
rewrite (X4'_swap' l i k) // -?X0' (plus_comm (d*a1)) -plus_assoc inv_l plus_0_l
(X4'_swap' l k i) // -X0' ?dist_l plus_assoc; rsimpl.
rewrite inv_l plus_0_r
(Z3_swap' j l i) // X'def; rsimpl.
rewrite (Z3_swap' j l k) // X'def; rsimpl.
rewrite (X4'_swap' j l i) // -X0' inv_r X'zero GId
(X4'_swap' j k i) // (X5_swap' l k j i) // -X0'
(X4_swap' l i j) // (X4'_swap' j k i) // -X0'
plus_assoc -(plus_assoc _ _ (-(a2 * d)))inv_l plus_0_l inv_r X'zero GId.
rewrite (X5_swap' j k l i) // (X4_swap' j k l) // -X0' inv_l X'zero GId
(X4'_swap' l k i) // -X0' -X0 ?inv_l ?X'zero GId //. Qed.
Lemma L03: (X' jk a1 .* X' jl a2 .* X' jk (-a1) .* X' jl (-a2)) ^^ X ki b ^^ X li d = Id.
ZCR; simplify0. rewrite ?X'zero ?GId.
rewrite (X4'_swap j i k) // -X0'
(X4'_swap' j k i) // -X0'
(X4'_swap' j i l) // -X0' -inv_plus inv_r X'zero GId
(X4'_swap' j k l) // -?X0' inv_r X'zero GId -X0 inv_r X'zero //. Qed.
Lemma L04: (X' jk a1 ^^ X ij (-(1)) .* X' jk (-a1)) ^^ X ki b ^^ X li d = Z' ik a1 b ^^ X li d.
ZCR; simplify0. rewrite ?X'zero ?GId. bite.
rewrite (X4'_swap' j i k) // -X0' inv_r X'zero GId -X0' inv_r X'zero GId //. Qed.
Lemma L05: (X' jl a2 ^^ X ij (-(1)) .* X' jl (-a2)) ^^ X ki b ^^ X li d = X' il a2 ^^ X ki b ^^ X li d.
ZCR; simplify0. rewrite ?X'zero ?GId. bite.
rewrite (X4'_swap' j i l) //; do 2 rewrite -X0' inv_r X'zero GId //. Qed.
End ChicagoBuilding.
Section Z4_Untangle. Import ZC_tactic.
Context (i j k l m n : nat) (a1 a2 b d : R)
{ij : i != j} {ji : j != i}
{ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}
{kl : k != l} {il : i != l} {jl : j != l} {lk : l != k} {li : l != i} {lj : l != j}.
(* Formula with 4 Z's *)
Lemma Z4_01: (X' ik a1 .* X' il a2 .* X' ik (-a1) .* X' il (-a2)) ^^ X ki b ^^ X li d = Id.
rewrite ?forward_rule ?XC2.
Check
(* Lemma Z4_01: (X' kj (- a1) .* Z' ij a2 b .* X' kj a1) ^^ (X im d) = (Z' ij a2 b ^^ X kj a1) ^^ (X im d).
ZCR. rewrite ?X'def ?X'zero -?GA; cancel.
rewrite Z4_swap' //.
rewrite (X5_swap' i m k j) // (Z3'_swap' i m k) // X'def (X5_swap' i m k j) //
(Z3'_swap' j m k) // X'def (X5_swap' j m k i) //
(Z3_swap' k j m) // -X0.
simplify0. rewrite inv_l. by simplify0. Qed. *)
End Z4_Untangle.
Section Z3_Untangle. Import ZC_tactic.
Context (i j k l m n : nat) (a a1 a2 b c d : R)
{ij : i != j} {ji : j != i}
{ik : i != k} {jk : j != k} {ki : k != i} {kj : k != j}
{kl : k != l} {il : i != l} {jl : j != l} {lk : l != k} {li : l != i} {lj : l != j}
{mi : m != i} {mj : m != j} {mk : m != k} {ml : m != l}
{im : i != m} {jm : j != m} {km : k != m} {lm : l != m}.
(* a, c in I *)
(* Formula with 5 Z's *)
Lemma Z3_01: (X' ij a .* X' jl c .* X' ij (-a) .* X' jl (-c)) ^^ X ji b ^^ X lj d =
(X' il (a*c)) ^^ X ji b ^^ X lj d.
ZCR; simplify0. Abort.
(* not obvious, but only 1 Z*)
Lemma Z3_02: (X' ik a1 .* X' kl a2 .* X' ik (-a1) .* X' kl (-a2)) ^^ X ji b ^^ X lj d =
(X' il (a1*a2)) ^^ X ji b ^^ X lj d.
ZCR; simplify0. rewrite X'zero GId. Abort.
(* this is obvious *)
Lemma Z3_03: (X' il (a*c) ^^ X jk 1 .* X' il (-(a*c))) ^^ X ji b ^^ X lj d = Id.
ZCR; simplify0. Admitted.
(* this should involve only Z?_swap type equations *)
Lemma Z3_04: (X' ij a .* (X' ij (-a) ^^ X jk 1)) ^^ X ji b ^^ X lj d =
(X' ik a) ^^ X ji b ^^ X lj d.
ZCR; simplify0. Admitted.
(* this is obvious *)
Lemma Z3_05: (X' kl c ^^ X jk (-(1)) .* X' kl (-c) ) ^^ X ji b ^^ X lj d =
(X' jl c) ^^ X ji b ^^ X lj d.
ZCR; simplify0. Admitted.
(* this should involve only Z?_swap type equations *)
Lemma Z3_06: (X' ij (a) .* X' kl c .* X' ij (-a) .* X' kl (-c)) ^^ X ji b ^^ X lj d = Id.
ZCR; simplify0. Admitted.
End Z3_Untangle.