-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
205 lines (143 loc) · 8.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import os
import numpy as np
import torch.nn.functional as F
import argparse
import logging
from lib.model import FAPNet
from utils.dataloader import get_loader,test_dataset
from utils.trainer import adjust_lr
from datetime import datetime
best_mae = 1
best_epoch = 0
def structure_loss(pred, mask):
weit = 1+5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15)-mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none')
wbce = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3))
pred = torch.sigmoid(pred)
inter = ((pred*mask)*weit).sum(dim=(2,3))
union = ((pred+mask)*weit).sum(dim=(2,3))
wiou = 1-(inter+1)/(union-inter+1)
return (wbce+wiou).mean()
def train(train_loader, model, optimizer, epoch, opt, loss_func, total_step):
"""
Training iteration
:param train_loader:
:param model:
:param optimizer:
:param epoch:
:param opt:
:param loss_func:
:param total_step:
:return:
"""
model.train()
size_rates = [0.75, 1, 1.25]
for step, data_pack in enumerate(train_loader):
for rate in size_rates:
optimizer.zero_grad()
images, gts, egs = data_pack
images = images.cuda()
gts = gts.cuda()
egs = egs.cuda()
# ---- rescale ----
trainsize = int(round(opt.trainsize*rate/32)*32)
if rate != 1:
images = F.upsample(images, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
gts = F.upsample(gts, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
egs = F.upsample(egs, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
sal1,sal2,sal3,sal4,edge_out = model(images)
loss_edge = loss_func(edge_out, egs)
loss1 = structure_loss(sal1, gts)
loss2 = structure_loss(sal2, gts)
loss3 = structure_loss(sal3, gts)
loss4 = structure_loss(sal4, gts)
loss_obj = loss1 + loss2 + loss3 + loss4
loss_total = loss_obj + loss_edge
loss_total.backward()
optimizer.step()
if step % 20 == 0 or step == total_step:
print('[{}] => [Epoch Num: {:03d}/{:03d}] => [Global Step: {:04d}/{:04d}] => [Loss_obj: {:.4f} Loss_edge: {:0.4f} Loss_all: {:0.4f}]'.
format(datetime.now(), epoch, opt.epoch, step, total_step, loss_obj.data,loss_edge.data, loss_total.data))
logging.info('#TRAIN#:Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Loss_obj: {:.4f} Loss_edge: {:0.4f} Loss_all: {:0.4f}'.
format( epoch, opt.epoch, step, total_step, loss_obj.data,loss_edge.data, loss_total.data))
if (epoch) % opt.save_epoch == 0:
torch.save(model.state_dict(), save_path + 'FAPNet_%d.pth' % (epoch))
def test(test_loader,model,epoch,save_path):
global best_mae,best_epoch
model.eval()
with torch.no_grad():
mae_sum=0
for i in range(test_loader.size):
image, gt, name,_ = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
_,_,_,res,_ = model(image)
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
mae_sum +=np.sum(np.abs(res-gt))*1.0/(gt.shape[0]*gt.shape[1])
mae = mae_sum / test_loader.size
print('Epoch: {} MAE: {} #### bestMAE: {} bestEpoch: {}'.format(epoch,mae,best_mae,best_epoch))
if epoch == 1:
best_mae = mae
else:
if mae < best_mae:
best_mae = mae
best_epoch = epoch
torch.save(model.state_dict(), save_path+'/FAPNet_best.pth')
print('best epoch:{}'.format(epoch))
logging.info('#TEST#:Epoch:{} MAE:{} bestEpoch:{} bestMAE:{}'.format(epoch,mae,best_epoch,best_mae))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=200,
help='epoch number, default=30')
parser.add_argument('--lr', type=float, default=1e-4,
help='init learning rate, try `lr=1e-4`')
parser.add_argument('--batchsize', type=int, default=32,
help='training batch size (Note: ~500MB per img in GPU)')
parser.add_argument('--trainsize', type=int, default=352,
help='the size of training image, try small resolutions for speed (like 256)')
parser.add_argument('--clip', type=float, default=0.5,
help='gradient clipping margin')
parser.add_argument('--decay_rate', type=float, default=0.1,
help='decay rate of learning rate per decay step')
parser.add_argument('--decay_epoch', type=int, default=30,
help='every N epochs decay lr')
parser.add_argument('--gpu', type=int, default=0,
help='choose which gpu you use')
parser.add_argument('--save_epoch', type=int, default=5,
help='every N epochs save your trained snapshot')
parser.add_argument('--save_model', type=str, default='./Snapshot/FAPNet/')
parser.add_argument('--train_img_dir', type=str, default='./data/TrainDataset/Imgs/')
parser.add_argument('--train_gt_dir', type=str, default='./data/TrainDataset/GT/')
parser.add_argument('--train_eg_dir', type=str, default='./data/TrainDataset/Edge/')
parser.add_argument('--test_img_dir', type=str, default='./data/TestDataset/CAMO/Imgs/')
parser.add_argument('--test_gt_dir', type=str, default='./data/TestDataset/CAMO/GT/')
parser.add_argument('--test_eg_dir', type=str, default='./data/TestDataset/CAMO/Edge/')
opt = parser.parse_args()
torch.cuda.set_device(opt.gpu)
## log
save_path = opt.save_model
os.makedirs(save_path, exist_ok=True)
logging.basicConfig(filename=opt.save_model+'/log.log',format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]', level = logging.INFO,filemode='a',datefmt='%Y-%m-%d %I:%M:%S %p')
logging.info("COD-Train")
logging.info("Config")
logging.info('epoch:{};lr:{};batchsize:{};trainsize:{};clip:{};decay_rate:{};save_path:{};decay_epoch:{}'.format(opt.epoch,opt.lr,opt.batchsize,opt.trainsize,opt.clip,opt.decay_rate,opt.save_model,opt.decay_epoch))
#
model = FAPNet(channel=64).cuda()
optimizer = torch.optim.Adam(model.parameters(), opt.lr)
LogitsBCE = torch.nn.BCEWithLogitsLoss()
#net, optimizer = amp.initialize(model_SINet, optimizer, opt_level='O1') # NOTES: Ox not 0x
train_loader = get_loader(opt.train_img_dir, opt.train_gt_dir, opt.train_eg_dir, batchsize=opt.batchsize,trainsize=opt.trainsize)
test_loader = test_dataset(opt.test_img_dir, opt.test_gt_dir, testsize=opt.trainsize)
total_step = len(train_loader)
print('--------------------starting-------------------')
print('-' * 30, "\n[Training Dataset INFO]\nimg_dir: {}\ngt_dir: {}\nLearning Rate: {}\nBatch Size: {}\n"
"Training Save: {}\ntotal_num: {}\n".format(opt.train_img_dir, opt.train_gt_dir, opt.lr,
opt.batchsize, opt.save_model, total_step), '-' * 30)
for epoch_iter in range(1, opt.epoch):
adjust_lr(optimizer, epoch_iter, opt.decay_rate, opt.decay_epoch)
train(train_loader, model, optimizer, epoch_iter, opt, LogitsBCE, total_step)
test(test_loader, model, epoch_iter, opt.save_model)