-
-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathpath_scanner.go
180 lines (157 loc) · 4.64 KB
/
path_scanner.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
package canvas
import "math"
// Scanner returns a path scanner.
func (p *Path) Scanner() *PathScanner {
return &PathScanner{p, -1}
}
// ReverseScanner returns a path scanner in reverse order.
func (p *Path) ReverseScanner() *PathReverseScanner {
return &PathReverseScanner{p, len(p.d)}
}
// PathScanner scans the path.
type PathScanner struct {
p *Path
i int
}
// Scan scans a new path segment and should be called before the other methods.
func (s *PathScanner) Scan() bool {
if s.i+1 < len(s.p.d) {
s.i += cmdLen(s.p.d[s.i+1])
return true
}
return false
}
// Cmd returns the current path segment command.
func (s *PathScanner) Cmd() float64 {
return s.p.d[s.i]
}
// Values returns the current path segment values.
func (s *PathScanner) Values() []float64 {
return s.p.d[s.i-cmdLen(s.p.d[s.i])+2 : s.i]
}
// Start returns the current path segment start position.
func (s *PathScanner) Start() Point {
i := s.i - cmdLen(s.p.d[s.i])
if i == -1 {
return Point{}
}
return Point{s.p.d[i-2], s.p.d[i-1]}
}
// CP1 returns the first control point for quadratic and cubic Béziers.
func (s *PathScanner) CP1() Point {
if s.p.d[s.i] != QuadToCmd && s.p.d[s.i] != CubeToCmd {
panic("must be quadratic or cubic Bézier")
}
i := s.i - cmdLen(s.p.d[s.i]) + 1
return Point{s.p.d[i+1], s.p.d[i+2]}
}
// CP2 returns the second control point for cubic Béziers.
func (s *PathScanner) CP2() Point {
if s.p.d[s.i] != CubeToCmd {
panic("must be cubic Bézier")
}
i := s.i - cmdLen(s.p.d[s.i]) + 1
return Point{s.p.d[i+3], s.p.d[i+4]}
}
// Arc returns the arguments for arcs (rx,ry,rot,large,sweep).
func (s *PathScanner) Arc() (float64, float64, float64, bool, bool) {
if s.p.d[s.i] != ArcToCmd {
panic("must be arc")
}
i := s.i - cmdLen(s.p.d[s.i]) + 1
large, sweep := toArcFlags(s.p.d[i+4])
return s.p.d[i+1], s.p.d[i+2], s.p.d[i+3] * 180.0 / math.Pi, large, sweep
}
// End returns the current path segment end position.
func (s *PathScanner) End() Point {
return Point{s.p.d[s.i-2], s.p.d[s.i-1]}
}
// Path returns the current path segment.
func (s *PathScanner) Path() *Path {
p := &Path{}
p.MoveTo(s.Start().X, s.Start().Y)
switch s.Cmd() {
case LineToCmd:
p.LineTo(s.End().X, s.End().Y)
case QuadToCmd:
p.QuadTo(s.CP1().X, s.CP1().Y, s.End().X, s.End().Y)
case CubeToCmd:
p.CubeTo(s.CP1().X, s.CP1().Y, s.CP2().X, s.CP2().Y, s.End().X, s.End().Y)
case ArcToCmd:
rx, ry, rot, large, sweep := s.Arc()
p.ArcTo(rx, ry, rot, large, sweep, s.End().X, s.End().Y)
}
return p
}
// PathReverseScanner scans the path in reverse order.
type PathReverseScanner struct {
p *Path
i int
}
// Scan scans a new path segment and should be called before the other methods.
func (s *PathReverseScanner) Scan() bool {
if 0 < s.i {
s.i -= cmdLen(s.p.d[s.i-1])
return true
}
return false
}
// Cmd returns the current path segment command.
func (s *PathReverseScanner) Cmd() float64 {
return s.p.d[s.i]
}
// Values returns the current path segment values.
func (s *PathReverseScanner) Values() []float64 {
return s.p.d[s.i+1 : s.i+cmdLen(s.p.d[s.i])-1]
}
// Start returns the current path segment start position.
func (s *PathReverseScanner) Start() Point {
if s.i == 0 {
return Point{}
}
return Point{s.p.d[s.i-3], s.p.d[s.i-2]}
}
// CP1 returns the first control point for quadratic and cubic Béziers.
func (s *PathReverseScanner) CP1() Point {
if s.p.d[s.i] != QuadToCmd && s.p.d[s.i] != CubeToCmd {
panic("must be quadratic or cubic Bézier")
}
return Point{s.p.d[s.i+1], s.p.d[s.i+2]}
}
// CP2 returns the second control point for cubic Béziers.
func (s *PathReverseScanner) CP2() Point {
if s.p.d[s.i] != CubeToCmd {
panic("must be cubic Bézier")
}
return Point{s.p.d[s.i+3], s.p.d[s.i+4]}
}
// Arc returns the arguments for arcs (rx,ry,rot,large,sweep).
func (s *PathReverseScanner) Arc() (float64, float64, float64, bool, bool) {
if s.p.d[s.i] != ArcToCmd {
panic("must be arc")
}
large, sweep := toArcFlags(s.p.d[s.i+4])
return s.p.d[s.i+1], s.p.d[s.i+2], s.p.d[s.i+3] * 180.0 / math.Pi, large, sweep
}
// End returns the current path segment end position.
func (s *PathReverseScanner) End() Point {
i := s.i + cmdLen(s.p.d[s.i])
return Point{s.p.d[i-3], s.p.d[i-2]}
}
// Path returns the current path segment.
func (s *PathReverseScanner) Path() *Path {
p := &Path{}
p.MoveTo(s.Start().X, s.Start().Y)
switch s.Cmd() {
case LineToCmd:
p.LineTo(s.End().X, s.End().Y)
case QuadToCmd:
p.QuadTo(s.CP1().X, s.CP1().Y, s.End().X, s.End().Y)
case CubeToCmd:
p.CubeTo(s.CP1().X, s.CP1().Y, s.CP2().X, s.CP2().Y, s.End().X, s.End().Y)
case ArcToCmd:
rx, ry, rot, large, sweep := s.Arc()
p.ArcTo(rx, ry, rot, large, sweep, s.End().X, s.End().Y)
}
return p
}