forked from rikpg/IntersectionMerge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcore.py
312 lines (267 loc) · 8.52 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#
# Module with all the merging functions
#
# Evey function with a name ending with '_merge' will be auto loaded
from collections import deque
import heapq
from itertools import chain
from typing import Iterable, TypeVar
import networkx
def rik_merge(lsts):
"""Rik. Poggi"""
sets = (set(e) for e in lsts if e)
results = [next(sets)]
for e_set in sets:
to_update = []
for i,res in enumerate(results):
if not e_set.isdisjoint(res):
to_update.insert(0,i)
if not to_update:
results.append(e_set)
else:
last = results[to_update.pop(-1)]
for i in to_update:
last |= results[i]
del results[i]
last |= e_set
return results
def sve_merge(lsts):
"""Sven Marnach"""
sets = {}
for lst in lsts:
s = set(lst)
t = set()
for x in s:
if x in sets:
t.update(sets[x])
else:
sets[x] = s
for y in t:
sets[y] = s
s.update(t)
ids = set()
result = []
for s in sets.values():
if id(s) not in ids:
ids.add(id(s))
result.append(s)
return result
def hoc_merge(lsts): # modified a bit to make it return sets
"""hochl"""
s = [set(lst) for lst in lsts if lst]
i,n = 0,len(s)
while i < n-1:
for j in range(i+1, n):
if s[i].intersection(s[j]):
s[i].update(s[j])
del s[j]
n -= 1
break
else:
i += 1
return [set(i) for i in s]
def nik_merge(lsts):
"""Niklas B."""
sets = [set(lst) for lst in lsts if lst]
merged = 1
while merged:
merged = 0
results = []
while sets:
common, rest = sets[0], sets[1:]
sets = []
for x in rest:
if x.isdisjoint(common):
sets.append(x)
else:
merged = 1
common |= x
results.append(common)
sets = results
return sets
def pairs(lst):
i = iter(lst)
first = prev = item = next(i)
for item in i:
yield prev, item
prev = item
yield item, first
def kat_merge(lsts):
"""katrielalex"""
g = networkx.Graph()
for sub_list in lsts:
if not sub_list:
continue
for edge in pairs(sub_list):
g.add_edge(*edge)
return networkx.connected_components(g)
def rob_merge(lsts):
"""robert king"""
lsts = [sorted(l) for l in lsts] # I changed this line
one_list = heapq.merge(*[zip(l,[i]*len(l)) for i,l in enumerate(lsts)])
previous = next(one_list)
d = {i:i for i in range(len(lsts))}
for current in one_list:
if current[0]==previous[0]:
d[current[1]] = d[previous[1]]
previous=current
groups=[[] for i in range(len(lsts))]
for k in d:
groups[d[k]].append(lsts[k])
return [set(chain(*g)) for g in groups if g]
def agf_merge(lsts):
"""agf"""
newsets, sets = [set(lst) for lst in lsts if lst], []
while len(sets) != len(newsets):
sets, newsets = newsets, []
for aset in sets:
for eachset in newsets:
if not aset.isdisjoint(eachset):
eachset.update(aset)
break
else:
newsets.append(aset)
return newsets
def agf_opt_merge(lists):
"""agf (optimized)"""
sets = deque(set(lst) for lst in lists if lst)
results = []
disjoint = 0
current = sets.pop()
while True:
merged = False
newsets = deque()
for _ in range(disjoint, len(sets)):
this = sets.pop()
if not current.isdisjoint(this):
current.update(this)
merged = True
disjoint = 0
else:
newsets.append(this)
disjoint += 1
if sets:
newsets.extendleft(sets)
if not merged:
results.append(current)
try:
current = newsets.pop()
except IndexError:
break
disjoint = 0
sets = newsets
return results
def ste_merge(lsts):
"""steabert"""
# this is an index list that stores the joined id for each list
joined = range(len(lsts))
# create an ordered list with indices
indexed_list = sorted((el,index) for index,lst in enumerate(lsts) for el in lst)
# loop throught the ordered list, and if two elements are the same and
# the lists are not yet joined, alter the list with joined id
el_0,idx_0 = None,None
for el,idx in indexed_list:
if el == el_0 and joined[idx] != joined[idx_0]:
old = joined[idx]
rep = joined[idx_0]
joined = [rep if id == old else id for id in joined]
el_0, idx_0 = el, idx
return joined
def che_merge(lsts):
"""ChessMaster"""
results, sets = [], [set(lst) for lst in lsts if lst]
upd, isd, pop = set.update, set.isdisjoint, sets.pop
while sets:
if not [upd(sets[0],pop(i)) for i in range(len(sets)-1,0,-1) if not isd(sets[0],sets[i])]:
results.append(pop(0))
return results
def locatebin(bins, n):
"""Find the bin where list n has ended up: Follow bin references until
we find a bin that has not moved.
"""
while bins[n] != n:
n = bins[n]
return n
def ale_merge(data):
"""alexis"""
bins = list(range(len(data))) # Initialize each bin[n] == n
nums = dict()
data = [set(m) for m in data] # Convert to sets
for r, row in enumerate(data):
for num in row:
if num not in nums:
# New number: tag it with a pointer to this row's bin
nums[num] = r
continue
else:
dest = locatebin(bins, nums[num])
if dest == r:
continue # already in the same bin
if dest > r:
dest, r = r, dest # always merge into the smallest bin
data[dest].update(data[r])
data[r] = None
# Update our indices to reflect the move
bins[r] = dest
r = dest
# Filter out the empty bins
have = [ m for m in data if m ]
#print len(have), "groups in result" #removed this line
return have
def nik_rew_merge(lsts):
"""Nik's rewrite"""
sets = list(map(set,lsts))
results = []
while sets:
first, rest = sets[0], sets[1:]
merged = False
sets = []
for s in rest:
if s and s.isdisjoint(first):
sets.append(s)
else:
first |= s
merged = True
if merged:
sets.append(first)
else:
results.append(first)
return results
T = TypeVar('T')
def takeshi_merge(lists: Iterable[Iterable[T]]) -> list[set[T]]:
"""takeshi"""
bins: dict[T: set[T]] = dict()
bin_refs: dict[T: T] = dict()
for lst in lists:
if not lst:
continue
# Gather the bin refs of all items in the list that we have
# already seen.
encountered_items_bin_refs = {
bin_refs[item]
for item in lst
if item in bin_refs
}
if len(encountered_items_bin_refs) >= 1:
# Some of the items in `lst` have already been seen in a
# previous iteration. They are therefore already attached
# to a bin. Select any of their corresponding bin ref.
bin_ref = encountered_items_bin_refs.pop()
# If the previously-seen items were not all attached to the
# same bin, their respective bins need to be merged into
# the selected one.
if len(encountered_items_bin_refs) > 0:
to_merge_bins = [bins.pop(ref) for ref in encountered_items_bin_refs]
bins[bin_ref].update(chain(*to_merge_bins))
for item in chain(*to_merge_bins):
bin_refs[item] = bin_ref
bins[bin_ref].update(lst)
else:
# None of the items in `lst` have already been seen in a
# previous iteration. Therefore, we can safely pick any
# item as our new bin ref and create the corresponding bin.
bin_ref = next(iter(lst))
bins[bin_ref] = set(lst)
for item in lst:
bin_refs[item] = bin_ref
return list(bins.values())