-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
287 lines (247 loc) · 16.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import torch
import argparse
from nerf.provider import NeRFDataset
from nerf.utils import *
from optimizer import Shampoo
import wandb
from pdb import set_trace
import copy
import shutil
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# from nerf.gui import NeRFGUI
# torch.autograd.set_detect_anomaly(True)
def clear_directory(path):
import shutil
for filename in os.listdir(path):
file_path = os.path.join(path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--text', type=str, nargs="+", default=None, help="text prompt")
parser.add_argument('--teacher_text', type=str, nargs="+", default=None, help="text prompt")
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --dir_text")
parser.add_argument('-O2', action='store_true', help="equals --fp16 --dir_text")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]')
parser.add_argument('--seed', type=int, default=0)
### training options
parser.add_argument('--iters', type=int, default=10000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-3, help="initial learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=64, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading")
# model options
parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
# network backbone
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--backbone', type=str, default='grid', help="nerf backbone, choose from [grid, tcnn, vanilla]")
# rendering resolution in training, decrease this if CUDA OOM.
parser.add_argument('--w', type=int, default=64, help="render width for NeRF in training")
parser.add_argument('--h', type=int, default=64, help="render height for NeRF in training")
parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses")
### dataset options
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range")
parser.add_argument('--dir_text', action='store_true', help="direction-encode the text prompt, by appending front/side/back/overhead view")
parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region")
parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")
parser.add_argument('--lambda_entropy', type=float, default=1e-4, help="loss scale for alpha entropy")
parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value")
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
parser.add_argument('--lambda_stable_diff', type=float, default=1, help="loss scale for alpha entropy")
parser.add_argument('--lambda_teacher_image', type=float, default=1, help="loss scale for alpha value")
parser.add_argument('--lambda_rgb', type=float, default=1, help="loss scale for alpha entropy")
parser.add_argument('--lambda_sigma', type=float, default=1, help="loss scale for alpha value")
parser.add_argument('--lambda_depth', type=float, default=1, help="loss scale for alpha entropy")
### stable training options
parser.add_argument('--clip_grad', action='store_true', help="overwrite current experiment")
parser.add_argument('--fine_tune_conditioner', action='store_true', help="overwrite current experiment")
parser.add_argument('--clip_grad_val', default = 1.0, type=float, help="overwrite current experiment")
parser.add_argument('--init', default = None)
parser.add_argument('--normalization', type = str, default = 'No')
parser.add_argument('--WN', type = str, default = None)
# ### GUI options
parser.add_argument('--W', type=int, default=800, help="GUI width")
parser.add_argument('--H', type=int, default=800, help="GUI height")
### Logging options
parser.add_argument('--wandb_flag', action='store_true', help="log in wandb")
parser.add_argument('--project_name', type=str, default='test')
parser.add_argument('--exp_name', type=str, default='test')
parser.add_argument('--overwrite', action='store_true', help="overwrite current experiment")
###Network options
parser.add_argument('--num_layers', type=int, default=3, help="render width for NeRF in training")
parser.add_argument('--hidden_dim', type=int, default=64, help="render width for NeRF in training")
parser.add_argument('--skip', action = 'store_true')
parser.add_argument('--bottleneck', action = 'store_true')
parser.add_argument('--arch', type = str, default='mlp')
### Conditioning options
parser.add_argument('--conditioning_model', type=str, default=None)
parser.add_argument('--conditioning_mode', type=str, default='cat')
parser.add_argument('--conditioning_dim', type = int, default = 64 )
parser.add_argument('--meta_batch_size', type = int, default = 1)
parser.add_argument('--multiple_conditioning_transformers', action = 'store_true')
parser.add_argument('--condition_trans', action = 'store_true')
parser.add_argument('--phrasing', action = 'store_true')
parser.add_argument('--curricullum', action = 'store_true')
### Distillation options
parser.add_argument('--load_teachers', type=str, default=None)
#parser.add_argument('--teacher_size', nargs='+', type = int, default = None )
parser.add_argument('--teacher_size', type = int, default = None )
#### Other option
parser.add_argument('--mem', action='store_true', help="overwrite current experiment")
parser.add_argument('--dummy', action='store_true', help="overwrite current experiment")
parser.add_argument('--test_teachers', action='store_true', help="overwrite current experiment")
parser.add_argument('--not_diff_loss', action='store_true', help="overwrite current experiment")
parser.add_argument('--dist_image_loss', action='store_true', help="overwrite current experiment")
parser.add_argument('--dist_sigma_rgb_loss', action='store_true', help="overwrite current experiment")
parser.add_argument('--dist_depth_loss', action='store_true', help="overwrite current experiment")
parser.add_argument('--skip_list', nargs='+', type = int, default = None)
parser.add_argument('--train_list', nargs='+', type = int, default = None)
parser.add_argument('--test_list', nargs='+', type = int, default = None)
parser.add_argument('--pre_trained_path', type=str, default=None)
# parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
# parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy")
# parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
# parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
# parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
opt = parser.parse_args()
if opt.arch != 'mlp':
with open(opt.text[0]) as f:
lines = f.readlines()
lines = [line.replace("\n", "") for line in lines]
opt.text = lines
if opt.teacher_text:
with open(opt.teacher_text[0]) as f:
lines = f.readlines()
opt.teacher_text = [" ".join(line.split()) for line in lines]
opt.num_scenes = len(opt.text)
opt.workspace = os.path.join("outputs", opt.project_name+'_'+opt.exp_name)
print(opt.text)
if opt.pre_trained_path is not None:
os.makedirs(opt.workspace+"/checkpoints")
print('copying...')
shutil.copyfile(sorted(glob.glob(f'{opt.pre_trained_path}checkpoints/*.pth'))[-1], f'{opt.workspace}/checkpoints/df_ep0001.pth')
if opt.overwrite and os.path.exists(opt.workspace):
clear_directory(opt.workspace)
if opt.wandb_flag:
resume_flag = opt.ckpt == 'latest'
wandb.init(project = opt.project_name,config = opt, resume = True, name = opt.exp_name, id = opt.exp_name)
else:
wandb = None
if opt.O:
opt.fp16 = False
opt.dir_text = True
# use occupancy grid to prune ray sampling, faster rendering.
opt.cuda_ray = True
# opt.lambda_entropy = 1e-4
# opt.lambda_opacity = 0
elif opt.O2:
opt.fp16 = True
opt.dir_text = True
opt.lambda_entropy = 1e-4 # necessary to keep non-empty
opt.lambda_opacity = 3e-3 # no occupancy grid, so use a stronger opacity loss.
'''
if opt.backbone == 'vanilla':
from nerf.network import NeRFNetwork
elif opt.backbone == 'tcnn':
from nerf.network_tcnn import NeRFNetwork
elif opt.backbone == 'grid':
from nerf.network_grid import NeRFNetwork
else:
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
'''
print(opt)
seed_everything(opt.seed)
'''
if 'hyper_transformer' in opt.arch:
if 'split' in opt.arch:
from nerf.split_hyper_network_grid import HyperTransNeRFNetwork as NeRFNetwork
else:
'''
from nerf.hyper_network_grid import HyperTransNeRFNetwork as NeRFNetwork
model = nn.DataParallel(NeRFNetwork(opt, num_layers= opt.num_layers, hidden_dim = opt.hidden_dim,wandb_obj=wandb ), device_ids = [0])
'''
if True:
model = nn.DataParallel(NeRFNetwork(opt, num_layers= opt.num_layers, hidden_dim = opt.hidden_dim,wandb_obj=wandb ), device_ids = [0])
else:
model = NeRFNetwork(opt, num_layers= opt.num_layers, hidden_dim = opt.hidden_dim)
'''
if opt.load_teachers is not None:
with open(opt.load_teachers) as f:
lines = f.readlines()
lines = [line.replace("\n", "") for line in lines]
opt.teacher_paths = lines
model.teacher_models = []
for idx, path in enumerate(opt.teacher_paths):
print(path)
model_path = glob.glob(opt.teacher_paths[idx]+"/checkpoints/*")[-1]
model_teacher = nn.DataParallel(NeRFNetwork(opt, num_layers= opt.num_layers, hidden_dim = opt.hidden_dim,wandb_obj=wandb, teacher_flag = True, teacher_id = idx), device_ids = [0])
#TODO fix these
#model_teacher.module.scene_id = idx
model_teacher.module.sigma_net.epoch = 0
model_teacher.module.load_checkpoint( checkpoint = model_path)
model.teacher_models.append(model_teacher)
if opt.test_teachers:
for index in range(opt.num_scenes):
model_teacher.module.scene_id = index % opt.teacher_size
#model_teacher.module.scene_id = idx
model_teacher.module.load_checkpoint( checkpoint = model_path)
from nerf.sd import StableDiffusion
guidance = StableDiffusion('cuda')
trainer = Trainer('df', opt, model_teacher, guidance, device='cuda', workspace=opt.workspace, fp16=opt.fp16, use_checkpoint='scratch')
test_loader = NeRFDataset(opt, device='cuda', type='test', H=opt.H, W=opt.W, size=100).dataloader()
model_teacher.module.sigma_net.epoch = 0
trainer.test(test_loader, scene_id = idx)
#print(model)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if opt.test:
guidance = None # no need to load guidance model at test
trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, fp16=opt.fp16, use_checkpoint=opt.ckpt)
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
trainer.test(test_loader)
if opt.save_mesh:
trainer.save_mesh(resolution=256)
else:
if opt.guidance == 'stable-diffusion':
from nerf.sd import StableDiffusion
guidance = StableDiffusion(device)
elif opt.guidance == 'clip':
from nerf.clip import CLIP
guidance = CLIP(device)
else:
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
optimizer = lambda model: torch.optim.Adam(model.module.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
#optimizer = lambda model: Adan(model.module.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
# optimizer = lambda model: Shampoo(model.get_params(opt.lr))
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader()
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 1e-3 if iter < 100 else 0.1 ** min(iter / opt.iters, 1))
#scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
# scheduler = lambda optimizer: optim.lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=opt.iters, pct_start=0.1)
trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True, wandb_obj = wandb)
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader()
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
trainer.train(train_loader, valid_loader,test_loader, max_epoch)
# also test
trainer.test(test_loader)
if opt.save_mesh:
trainer.save_mesh(resolution=256)