100% accuracy when finetuning model #835
nehakulkarni15
started this conversation in
General
Replies: 1 comment
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Hello, I used TSAI to build a model and use the pretrained weights on a separate dataset to finetune. However, I am getting 100% accuracy when testing this dataset. Could anyone help me troubleshoot?
![image](https://private-user-images.githubusercontent.com/114176483/267786436-a0d8f318-3e12-44b5-89a0-09b729b51faf.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk2NzY1NDAsIm5iZiI6MTczOTY3NjI0MCwicGF0aCI6Ii8xMTQxNzY0ODMvMjY3Nzg2NDM2LWEwZDhmMzE4LTNlMTItNDRiNS04OWEwLTA5YjcyOWI1MWZhZi5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE2JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxNlQwMzI0MDBaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1iYjhhM2QzMDI2MGMxZDIzODliY2Y3YjJiYTE1YTQwOGJiYmQ5NmUxMTkyNGFmYjc3YjJlOTg5YzA2NDFlNDY0JlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.bVK5tL3vIrkHNceVTRXt6B42rS0l_rQf_S9Q_a0y1nA)
![Untitled](https://private-user-images.githubusercontent.com/114176483/267786560-52bed50c-9f08-4612-89cb-b45adf99b3c4.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk2NzY1NDAsIm5iZiI6MTczOTY3NjI0MCwicGF0aCI6Ii8xMTQxNzY0ODMvMjY3Nzg2NTYwLTUyYmVkNTBjLTlmMDgtNDYxMi04OWNiLWI0NWFkZjk5YjNjNC5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE2JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxNlQwMzI0MDBaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1lZjAyNzE0OTcyYjZjODYyNzY2YzY0NDQyZDZiNzVkYzFlYzU4ZGUwNWJiZGQ0MWUxZDMwMzY1OTFhYzFhNzljJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.RgMgdjKqK4iSvZYvwIlCETZijSk9VMAtyoXIBDOeNXc)
code:
fineTuneName=f'{modelname}_fineTune'
dls3 = get_ts_dls(VLeftavgGut, yNew, splits=new_splits, tfms=tfms, batch_tfms=batch_tfms, path='/Users/nehakulkarni/Documents/GitHub/final-project-musculoskeletal-injury-location')
learn_pre_trained_FT = ts_learner(dls3, ResNetPlus, pretrained=True,\
learn_pre_trained_FT.fine_tune(5, 1e-3)
learn_pre_trained_FT.export(f'{fineTuneName}.pth')
learn_pre_trained_FT.save(fineTuneName)
output:
check unmatched_layers: ['backbone.0.convblock1.0.weight', 'backbone.0.convblock1.1.weight', 'backbone.0.convblock1.1.bias', 'backbone.0.convblock1.1.running_mean', 'backbone.0.convblock1.1.running_var', 'backbone.0.convblock2.0.weight', 'backbone.0.convblock2.1.weight', 'backbone.0.convblock2.1.bias', 'backbone.0.convblock2.1.running_mean', 'backbone.0.convblock2.1.running_var', 'backbone.0.convblock3.0.weight', 'backbone.0.convblock3.1.weight', 'backbone.0.convblock3.1.bias', 'backbone.0.convblock3.1.running_mean', 'backbone.0.convblock3.1.running_var', 'backbone.0.shortcut.0.weight', 'backbone.0.shortcut.1.weight', 'backbone.0.shortcut.1.bias', 'backbone.0.shortcut.1.running_mean', 'backbone.0.shortcut.1.running_var', 'backbone.1.convblock1.0.weight', 'backbone.1.convblock1.1.weight', 'backbone.1.convblock1.1.bias', 'backbone.1.convblock1.1.running_mean', 'backbone.1.convblock1.1.running_var', 'backbone.1.convblock2.0.weight', 'backbone.1.convblock2.1.weight', 'backbone.1.convblock2.1.bias', 'backbone.1.convblock2.1.running_mean', 'backbone.1.convblock2.1.running_var', 'backbone.1.convblock3.0.weight', 'backbone.1.convblock3.1.weight', 'backbone.1.convblock3.1.bias', 'backbone.1.convblock3.1.running_mean', 'backbone.1.convblock3.1.running_var', 'backbone.1.shortcut.0.weight', 'backbone.1.shortcut.1.weight', 'backbone.1.shortcut.1.bias', 'backbone.1.shortcut.1.running_mean', 'backbone.1.shortcut.1.running_var', 'backbone.2.convblock1.0.weight', 'backbone.2.convblock1.1.weight', 'backbone.2.convblock1.1.bias', 'backbone.2.convblock1.1.running_mean', 'backbone.2.convblock1.1.running_var', 'backbone.2.convblock2.0.weight', 'backbone.2.convblock2.1.weight', 'backbone.2.convblock2.1.bias', 'backbone.2.convblock2.1.running_mean', 'backbone.2.convblock2.1.running_var', 'backbone.2.convblock3.0.weight', 'backbone.2.convblock3.1.weight', 'backbone.2.convblock3.1.bias', 'backbone.2.convblock3.1.running_mean', 'backbone.2.convblock3.1.running_var', 'backbone.2.shortcut.weight', 'backbone.2.shortcut.bias', 'backbone.2.shortcut.running_mean', 'backbone.2.shortcut.running_var']
Beta Was this translation helpful? Give feedback.
All reactions