-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzobay.py
304 lines (241 loc) · 14.6 KB
/
zobay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from functools import partial
from re import A
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import gamma, softmax
from scipy.linalg import sqrtm
import scipy.stats
from tqdm import tqdm
PI = 3.1415926535897932384626
E = 2.718281828459045
EPSILON = 0.000001
omega = lambda k: 2 * PI**((k-1)/2) / gamma((k-1)/2)
c = lambda k: 0.39894228040143267793**k
# utils
import numpy as np
from scipy.stats import multivariate_normal
def multidet(M):
# Determinant of multidimensional matrix
dm = np.zeros(M.shape[0])
for _ in range(len(dm)):
dm[_] = np.linalg.det(M[_])
return dm[np.newaxis].T
# 90% sure this can be done using broadcasting:
def multimult(A, B):
# "Broadcast" multiplication of matrices with vector
dm = np.zeros(A.shape + B.shape)
for _ in range(len(dm)):
dm[_] = A[_] * B
return dm
def sigmabroadcast(sig, samples):
# "Broadcast" multiplication of matrices with vector
dm = np.zeros((samples.shape[0], sig.shape[0], sig.shape[0]))
for _ in range(dm.shape[0]):
dm[_] = sig @ samples[0][np.newaxis].T
return dm
def gaussianExpectation(mu, cov, fn, n_samples=1000, presamples=None):
if type(presamples) == type(None):
samples = np.random.multivariate_normal(mu, cov, n_samples)
else:
samples = presamples
return np.mean(np.apply_along_axis(fn, 1, samples), axis=0)
def mvNormpdf(x, mu, cov):
k = mu.shape[0]
#print(x.shape, mu.shape, cov.shape)
return 1/((2*np.pi)**(k/2)*(np.linalg.det(cov)**0.5))* np.exp(-0.5 * ((x-mu).T @ (np.linalg.pinv(cov)) @ (x-mu)).sum())
def logRatio(mu1, mu2, sig1, sig2, w1, w2):
return np.log(1 + (w2 * mvNormpdf(x, mu2, sig2))/(w1 * mvNormpdf(x, mu1, sig1)))
def pairwiseObjective(mu1, mu2, sig1, sig2, w1, w2):
return -w1 * gaussianExpectation() - w2 * gaussianExpectation()
class Param:
def __init__(self):
self.m_prev = 0
self.v_prev = 0
class VGMM:
def __init__(self, k=1, d=1):
"""We have a few parameters:
sigma_0 = base sigma
lambda_i (i \in range(1, k+1)) = sigma multiple
w_i (i \in range(1, k+1)) = weight
mu_i = mean
"""
self.sigma_0 = np.eye(d)
self.lambdas = np.random.rand(k, 1)
self.Ws = np.random.rand(k, 1)
self.ws = softmax(self.Ws)
self.mus = np.random.rand(k, d)
self.k = k
self.d = d
self.eta = 0.01 # learning rate
#adam
self.beta_1 = 0.9
self.beta_2 = 0.999
self.epsilon = 10**(-8)
self.m_prev = 0
self.v_prev = 0
self.adamparams = {}
self.n_samples = 1000
self.cgd = False
self.whist = []
self.lambdahist = [[] for i in range(k)]
self.lambdaghist = [[] for i in range(k)]
self.mughist = [[] for i in range(k)]
self.muhist = [[] for i in range(k)]
self.h = []
def get_grad(self, grad, params=None):
return self.adam(grad, params=params)
def adam(self, grad, params):
if params['id'] not in self.adamparams:
self.adamparams[params['id']] = Param()
s = self.adamparams[params['id']]
s.m_current = self.beta_1 * s.m_prev + (1 - self.beta_1) * grad
s.v_current = self.beta_2 * s.v_prev + (1 - self.beta_2) * grad**2
s.m_norm = s.m_current/(1 - self.beta_1**(params['t']+1))
s.v_norm = s.v_current/(1 - self.beta_2**(params['t']+1))
s.m_prev = s.m_current * 1.0
s.v_prev = s.v_current * 1.0
if params['id'] == 'lambda':
self.h.append(self.eta * s.m_norm/((s.v_norm**0.5) + self.epsilon))
return self.eta * s.m_norm/((s.v_norm**0.5) + self.epsilon)
def setTarget(self, dist):
# idea: compute sigma_0 based on ELBO
dist1 = scipy.stats.norm(-1, 0.5).pdf
dist2 = scipy.stats.norm(1, 2).pdf
self.targetpdf = lambda x: 0 * dist1(x) + 1 * dist2(x)
self.logp = lambda x: np.log(self.targetpdf(x))
# self.logp = lambda x: np.log(self.targetpdf(x)) if np.log(self.targetpdf(x)) > -100 else -100
def coordinateDescent(self, rounds=500, entropyRounds=1, energyRounds=1):
# TODO: allow "change < epsilon" flag
maxrounds = rounds
round = 0
for round in tqdm(range(maxrounds)):
self.round = round
for i in range(self.ws.shape[0]):
self.entropyDescent(rounds=entropyRounds, param=("w", i))
self.energyDescent(rounds=energyRounds, param=("w", i))
self.ws = softmax(self.Ws)
for i in range(self.lambdas.shape[0]):
self.entropyDescent(rounds=entropyRounds, param=("lambda", i))
self.energyDescent(rounds=energyRounds, param=("lambda", i))
pass
for i in range(self.mus.shape[0]):
self.entropyDescent(rounds=entropyRounds, param=("mu", i))
self.energyDescent(rounds=energyRounds, param=("mu", i))
def entropyDescent(self, rounds=1, param=None):
# maximize entropy wrt params
self.ws = softmax(self.Ws)
for round in range(rounds):
# update wrt individual entropies
# det of arrays within array, see https://stackoverflow.com/questions/13393733/determinant-of-multidimensional-array for optimization options
if round % 10 == 0:
# print(round, multimult(self.lambdas, self.sigma_0))
# print(round, self.mus)
pass
wGrads = -(np.log(self.ws)+1) + 1/2 * np.log(multidet(2*PI*E*multimult(self.lambdas**2, self.sigma_0))) * self.ws * (1 - self.ws)
lambdaGrads = self.ws * self.d/(self.lambdas + EPSILON)
var, ind = param
# only update one variable at a time
if var == "w" or not self.cgd:
# mask = np.zeros(self.Ws.shape)
# mask[ind] = np.ones(self.Ws[ind].shape)
self.Ws += self.get_grad(wGrads, params={'t':self.round, 'id':'node-W'})
if var == "lambda" or not self.cgd:
# mask = np.zeros(self.lambdas.shape)
# mask[ind] = np.ones(self.lambdas[ind].shape)
self.lambdas += self.get_grad(lambdaGrads, params={'t':self.round, 'id':'node-lambdas'})
# self.whist.append((len(self.whist), self.ws[0][0]))
self.muhist[ind].append(1.0 * self.mus[ind])
self.lambdahist[ind].append(1.0 * self.lambdas[ind])
self.lambdaghist[ind].append(1.0 * lambdaGrads[ind])
# update wrt pairwise entropies
Q1SAMPLES = np.random.multivariate_normal(self.mus[ind], self.lambdas[ind]**2 * self.sigma_0, self.n_samples)
self.Q1SAMPLES = Q1SAMPLES
for j in range(self.k):
if j != ind:
w1, w2 = self.ws[ind], self.ws[j]
sig1, sig2 = self.lambdas[ind]**2 * self.sigma_0, self.lambdas[j]**2 * self.sigma_0
sig1inv = np.linalg.inv(self.sigma_0 * self.lambdas[ind]**2)
sig2inv = np.linalg.inv(self.sigma_0 * self.lambdas[j]**2)
mu1, mu2 = self.mus[ind], self.mus[j]
# cache results
pdf1 = scipy.stats.multivariate_normal.pdf(Q1SAMPLES, mean=mu1, cov=sig1)#mvNormpdf(Q1SAMPLES, mu1, sig1)
pdf2 = scipy.stats.multivariate_normal.pdf(Q1SAMPLES, mean=mu2, cov=sig2)#mvNormpdf(Q1SAMPLES, mu2, sig2)
if var == "w" or not self.cgd:
#wfn1 = lambda x: np.log(1+(w2*pdf2/(w1 * pdf1))) + 1/(1+(w2*pdf2/(EPSILON + w1 * pdf1))) * (w2 * pdf2/(EPSILON + pdf1)) * (-1/(EPSILON + w1))
# evaluate wfn1 at Q1SAMPLES
wfn1_exp = np.log(1+(w2*pdf2/(w1 * pdf1))) + 1/(1+(w2*pdf2/(EPSILON + w1 * pdf1))) * (w2 * pdf2/(EPSILON + pdf1)) * (-1/(EPSILON + w1))
wfn1_exp = np.mean(wfn1_exp)
#wfn2 = lambda x: 1/(1 + (w1 * pdf1)/(w2 * pdf2)) * 1/(EPSILON + w2)
# evaluate wfn2 at !sSAMPLES
wfn2_exp = 1/(1 + (w1 * pdf1)/(w2 * pdf2)) * 1/(EPSILON + w2)
wfn2_exp = np.mean(wfn2_exp)
#self.Ws[ind] += self.get_grad(-gaussianExpectation(None, None, wfn1, presamples=Q1SAMPLES) - w2 * gaussianExpectation(None, None, wfn2, presamples=Q1SAMPLES) * w1 * (1 - w1), params={'t':self.round, 'id':'pair-'+str(ind)+','+str(j)+'-W'})
# use expectations to calculate gradient
self.Ws[ind] += self.get_grad(-wfn1_exp - w2 * wfn2_exp * w1 * (1 - w1), params={'t':self.round, 'id':'pair-'+str(ind)+','+str(j)+'-W'})
if var == "mu" or not self.cgd:
#omega1 = lambda x: 1/(1+(w2*pdf2/(EPSILON + w1 * pdf1))) * (w2 * pdf2/(EPSILON + pdf1)) * (-1/(EPSILON + pdf1**2)) * pdf1 * sig1inv @ (x - mu1[np.newaxis])
omega1 = 1/(1+(w2*pdf2/(EPSILON + w1 * pdf1))) * (w2 * pdf2/(EPSILON + pdf1)) * (-1/(EPSILON + pdf1**2)) * pdf1 * -sig1inv @ (Q1SAMPLES - mu1[np.newaxis])
#mufn1 = lambda x: sig1inv @ (x - mu1[np.newaxis]) * np.log(1+(w2*pdf2/(w1 * pdf1))) + omega1(x)
mufn1_exp = -sig1inv @ (Q1SAMPLES - mu1[np.newaxis]).T * np.log(1+(w2*pdf2/(w1 * pdf1))) + omega1
mufn1_exp = np.mean(mufn1_exp)
#mufn2 = lambda x: pdf2 * 1/(1 + (w1 * pdf1)/(w2 * pdf2)) * w1/(EPSILON + w2 * pdf2) * sig1inv @ (x - mu1[np.newaxis])
postprefix = -sig1inv @ (Q1SAMPLES - mu1[np.newaxis]).T
mufn2_exp = pdf2 * 1/(1 + (w1 * pdf1)/(w2 * pdf2)) * w1/(EPSILON + w2 * pdf2) * postprefix
mufn2_exp = np.mean(mufn2_exp)
self.mus[ind] += self.get_grad(np.squeeze((-w1 * mufn1_exp - w2 * mufn2_exp), axis=-1), params={'t':self.round, 'id':'pair-'+str(ind)+','+str(j)+'-mu'})
if var == "lambda" or not self.cgd:
# omega1 = lambda x: 1/(1+(w2*pdf2/(EPSILON + w1 * pdf1))) * (w2 * pdf2/(EPSILON + pdf1)) * (-1/(EPSILON + pdf1**2)) * pdf1 * (sig1inv - sig1inv @ (x - mu1[np.newaxis]) @ (x - mu1[np.newaxis]).T @ sig1inv) @ (self.lambdas[ind] * self.sigma_0)
# print(sig1inv.shape, (Q1SAMPLES - mu1[np.newaxis]).shape, (Q1SAMPLES - mu1[np.newaxis]).T.shape, sig1inv)
postprefix = (sig1inv - sig1inv @ (Q1SAMPLES - mu1[np.newaxis]).T @ (Q1SAMPLES - mu1[np.newaxis]) @ sig1inv)
postpostprefix = (self.lambdas[ind] * self.sigma_0)
omega1 = 1/(1+(w2*pdf2/(EPSILON + w1 * pdf1))) * (w2 * pdf2/(EPSILON + pdf1)) * (-1/(EPSILON + pdf1**2)) * pdf1 * postprefix * postpostprefix
#lambdafn1 = lambda x: (sig1inv - sig1inv @ (x - mu1[np.newaxis]) @ (x - mu1[np.newaxis]).T @ sig1inv) @ (self.lambdas[ind] * self.sigma_0) * np.log(1+(w2*pdf2/(w1 * pdf1))) + omega1(x)
lambdafn1_exp = (sig1inv - sig1inv @ (Q1SAMPLES - mu1[np.newaxis]).T @ (Q1SAMPLES - mu1[np.newaxis]) @ sig1inv) * (self.lambdas[ind] * self.sigma_0) * np.log(1+(w2*pdf2/(w1 * pdf1))) + omega1
lambdafn1_exp = np.mean(lambdafn1_exp)
# lambdafn2 = lambda x: pdf2 * 1/(1 + (w1 * pdf1)/(w2 * pdf2)) * w1/(EPSILON + w2 * pdf2) * (sig1inv - sig1inv @ (x - mu1[np.newaxis]) @ (x - mu1[np.newaxis]).T @ sig1inv) @ (self.lambdas[ind] * self.sigma_0)
lambdafn2_exp = pdf2 * 1/(1 + (w1 * pdf1)/(w2 * pdf2)) * w1/(EPSILON + w2 * pdf2) * (sig1inv - sig1inv @ (Q1SAMPLES - mu1[np.newaxis]).T @ (Q1SAMPLES - mu1[np.newaxis]) @ sig1inv) * (self.lambdas[ind] * self.sigma_0)
lambdafn2_exp = np.mean(lambdafn2_exp)
self.lambdas[ind] += self.get_grad(-w1 * lambdafn1_exp - w2 * lambdafn2_exp, params={'t':self.round, 'id':'pair-'+str(ind)+','+str(j)+'-lambda'})
def energyDescent(self, rounds=1, param="dummy variable"):
# minimize energy $-\int q \log p$ wrt params
self.ws = softmax(self.Ws)
for round in range(rounds):
for i in range(self.mus.shape[0]):
mu = self.mus[i].T
siginv = np.linalg.inv(self.sigma_0 * self.lambdas[i]**2)
sig = self.sigma_0 * self.lambdas[i]** 2
w = self.ws[i]
Q1SAMPLES = np.random.multivariate_normal(mu, sig, self.n_samples)
# mufn = lambda x: self.logp(x) * siginv @ (x - mu[np.newaxis])
mufn_exp = self.logp(Q1SAMPLES) * sigmabroadcast(-siginv, (Q1SAMPLES - mu[np.newaxis]))
mufn_exp = np.mean(mufn_exp)
# lambdafn = lambda x: self.logp(x) * -0.5 * (siginv - siginv @ (x - mu[np.newaxis]) @ (x - mu[np.newaxis]).T @ siginv) @ (2 * self.lambdas[i] * self.sigma_0)
lambdafn_exp = self.logp(Q1SAMPLES) * -0.5 * (siginv - siginv @ (Q1SAMPLES - mu[np.newaxis]).T @ (Q1SAMPLES - mu[np.newaxis]) @ siginv) * (2 * self.lambdas[i] * self.sigma_0)
lambdafn_exp = np.mean(lambdafn_exp)
logp_exp = self.logp(Q1SAMPLES)
logp_exp = np.mean(logp_exp)
self.mus[i] -= self.get_grad(np.squeeze(-self.ws[i] * mufn_exp, axis=-1), params={'t':self.round, 'id':'energy-mu-'+str(i)})*1.5
self.lambdas[i] -= self.get_grad(-1 * self.ws[i] * lambdafn_exp, params={'t':self.round, 'id':'energy-lambda-'+str(i)}) # expectation should be diagonal matrix
self.Ws -= self.get_grad(-1 * logp_exp * w * (1 - w), params={'t':self.round, 'id':'energy-W'+str(i)})
# self.lambdahist.append((len(self.lambdahist), self.lambdas[0][0]))
self.muhist[i].append(1.0 * self.mus[i])
self.lambdahist[i].append(1.0 * self.lambdas[i])
self.mughist[i].append(1.0 * np.squeeze(-self.ws[i] * mufn_exp, axis=-1))
# print results
def printout(self, plot=False, show_target=True):
print("weights", self.ws)
print("mus", self.mus)
print("sigma_0", self.sigma_0)
print("lambdas", self.lambdas)
if plot:
if self.d > 2:
raise ValueError("Dimensionality is too large for a plot of the resultant mixture.")
self.ws = softmax(self.Ws)
clustersamples = np.random.multinomial(10000, (self.ws).flatten(), size=1)[0]
data = np.array([])
for i in range(len(clustersamples)):
data = np.append(data, np.random.multivariate_normal(self.mus[i], self.lambdas[i]**2 * self.sigma_0, clustersamples[i]))
plt.hist(data, density=True, bins=30)
if show_target==True:
plt.plot(list(np.arange(-5,5,0.05)), [self.targetpdf(x) for x in list(np.arange(-5,5,0.05))])
plt.show()