-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_segm_render.py
180 lines (150 loc) · 7.05 KB
/
test_segm_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import os.path as osp
import yaml
from tqdm import tqdm
import einops
import numpy as np
import torch
from models import *
from utils import *
from datasets import *
from train_segm import load_model_checkpoint
if __name__ == "__main__":
# Load the pre-trained TensoRF model
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, required=True, help="Path to (.yaml) config file."
)
parser.add_argument(
"--checkpoint", type=int, default=0, help="Path to load saved checkpoint from."
)
parser.add_argument(
"--ckpt_segm", type=int, default=0, help="Path to load saved checkpoint from."
)
parser.add_argument(
'--load_saved', dest='load_saved', default=False, action='store_true', help='Load pre-saved rendering results'
)
config_args = parser.parse_args()
with open(config_args.config, 'r') as f:
cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
cfg = CfgNode(cfg_dict)
# Load blender data
# basedir = cfg.dataset.basedir.replace('data', 'data_segm')
basedir = cfg.dataset.basedir.replace('data', 'data_segm_allframe')
test_targets, test_poses, test_segms, test_times, counts, render_poses, render_times, (H, W, focal) = load_blender_data_segm(
basedir=basedir,
half_res=cfg.dataset.half_res,
testskip=cfg.dataset.test_skip,
white_background=cfg.dataset.white_background
)
print(f'rendering in shape {H} x {W}, half_res: {cfg.dataset.half_res}')
split = 'test'
n_view_test = len(test_poses)
# Specify the path to save rendered images
exp_name = config_args.config.split('/')[-1][:-5] + '_k=%d' % (config_args.n_object)
exp_base = os.path.join('logs_segm', exp_name)
# save_render_base = osp.join(exp_base, 'test_%06d' % (config_args.ckpt_segm))
# save_render_base = osp.join(exp_base, 'test_%06d_allframe' % (config_args.ckpt_segm))
save_render_base = osp.join(exp_base, 'test_%06d_allframe_k4' % (config_args.ckpt_segm))
os.makedirs(save_render_base, exist_ok=True)
device = 'cuda:0' # cfg.experiment.device
"""
Render with trained NeRF model & Mask field
"""
if not config_args.load_saved:
ckpt = load_checkpoint(cfg, config_args.checkpoint)
nvfi, renderer = load_model_checkpoint(cfg, ckpt, device)
vel_net = nvfi.nvfi.vel
kplane = nvfi.tensorf
# Load the pre-trained MaskField model
n_object = cfg.segmentation.n_object
model = MaskField(n_layer=4,
n_dim=128,
input_dim=3,
skips=[],
mask_dim=n_object,
mask_act='softmax').to(device)
weight_path = osp.join(exp_base, 'model_%06d.pth.tar' % (config_args.ckpt_segm))
model.load_state_dict(torch.load(weight_path))
nvfi.nvfi.mask_field = model
renderer.tensorf = nvfi
# Traverse the testing set
tbar = tqdm(total=n_view_test)
for vid in range(n_view_test):
pose = test_poses[vid]
target = test_targets[vid]
t = test_times[vid]
camera = Camera(pose, H, W, focal, target, cfg.dataset.near, cfg.dataset.far)
with torch.no_grad():
rgb_map, depth_map, acc_map, weights, segm_map = renderer.render(
t, camera.rays.to(device), white_background=cfg.dataset.white_background, mode='test', transfer_vel=True
)
segm_map = segm_map.cpu().numpy()
save_path = osp.join(save_render_base, 'r_%03d_segm.npy' % (vid))
np.save(save_path, segm_map)
segm_map = segm_map.argmax(-1)
segm_map_vis = build_segm_vis(segm_map)
save_path = osp.join(save_render_base, 'r_%03d_segm_vis.png' % (vid))
segm_map_vis = (segm_map_vis * 255).astype(np.uint8)
imageio.imwrite(save_path, segm_map_vis)
tbar.update(1)
"""
Compute quantitative metrics
"""
# Load predicted segmentation maps
pred_segms = []
for vid in range(n_view_test):
pred_segm_file = osp.join(save_render_base, 'r_%03d_segm.npy' % (vid))
pred_segm = np.load(pred_segm_file)
pred_segms.append(pred_segm)
pred_segms = np.stack(pred_segms, 0)
# Align the object order in GT & Pred
gt_segms_all = np.reshape(test_segms.cpu().numpy(), (-1))
gt_segms_all = compress_label(gt_segms_all)
pred_segms_all = np.reshape(pred_segms, (-1, config_args.n_object))
pred_segms_all = pred_segms_all.argmax(-1)
pred_segms_all = compress_label(pred_segms_all)
pred_segms_aligned = align_insts(gt_segms_all, pred_segms_all)
pred_segms_aligned = pred_segms_aligned.reshape(-1, H, W)
# mbs_eval = ClusteringMetrics(spec=[ClusteringMetrics.IOU, ClusteringMetrics.RI])
mbs_eval = ClusteringMetrics(spec=[ClusteringMetrics.IOU])
ap_eval_meter = {'Pred_IoU': [], 'Pred_Matched': [], 'Confidence': [], 'N_GT_Inst': []}
mbs_eval_meter = {'IoU': [], 'RI': []}
tbar = tqdm(total=n_view_test)
for vid in range(n_view_test):
target_segm = torch.Tensor(test_segms[vid])
pred_segm = torch.Tensor(pred_segms[vid])
target_segm = target_segm.reshape(-1).unsqueeze(0)
pred_segm = pred_segm.reshape(-1, config_args.n_object).unsqueeze(0)
# Accumulate for AP, PQ, F1, Pre, Rec
Pred_IoU, Pred_Matched, Confidence, N_GT_Inst = accumulate_eval_results(target_segm, pred_segm)
ap_eval_meter['Pred_IoU'].append(Pred_IoU)
ap_eval_meter['Pred_Matched'].append(Pred_Matched)
ap_eval_meter['Confidence'].append(Confidence)
ap_eval_meter['N_GT_Inst'].append(N_GT_Inst)
# mIoU & RI metrics
per_scan_mbs = mbs_eval(pred_segm, target_segm.long())
mbs_eval_meter['IoU'].append(per_scan_mbs['iou'])
# mbs_eval_meter['RI'].append(np.mean(per_scan_mbs['ri']))
# Save visualization of rendered segmentation maps
pred_segm = pred_segms_aligned[vid].reshape(H, W)
segm_map = pred_segm
segm_map_vis = build_segm_vis(segm_map, with_background=True)
save_path = osp.join(save_render_base, 'r_%03d_segm_vis.png' % (vid))
segm_map_vis = (segm_map_vis * 255).astype(np.uint8)
imageio.imwrite(save_path, segm_map_vis)
tbar.update(1)
# Evaluate
print('Evaluation on %s:' % (exp_name))
Pred_IoU = np.concatenate(ap_eval_meter['Pred_IoU'])
Pred_Matched = np.concatenate(ap_eval_meter['Pred_Matched'])
Confidence = np.concatenate(ap_eval_meter['Confidence'])
N_GT_Inst = np.sum(ap_eval_meter['N_GT_Inst'])
AP = calculate_AP(Pred_Matched, Confidence, N_GT_Inst, plot=False)
print('AveragePrecision@50:', AP)
PQ, F1, Pre, Rec = calculate_PQ_F1(Pred_IoU, Pred_Matched, N_GT_Inst)
print('PanopticQuality@50:', PQ, 'F1-score@50:', F1, 'Prec@50:', Pre, 'Recall@50:', Rec)
# IoU, RI = np.mean(mbs_eval_meter['IoU']), np.mean(mbs_eval_meter['RI'])
# print('mIoU:', IoU, 'RI:', RI)
IoU = np.mean(mbs_eval_meter['IoU'])
print('mIoU:', IoU)