-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluate.py
294 lines (239 loc) · 9.62 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import numpy as np
import os
from pykdtree.kdtree import KDTree
import trimesh
import pickle
import open3d
import typing
import sys
import config as cfg_loader
import multiprocessing as mp
from multiprocessing import Pool, Manager
from functools import partial
def distance_p2p(pointcloud_pred, pointcloud_gt,
normals_pred, normals_gt):
''' Computes minimal distances of each point in points_src to points_tgt.
Args:
points_src (numpy array): source points
normals_src (numpy array): source normals
points_tgt (numpy array): target points
normals_tgt (numpy array): target normals
'''
kdtree = KDTree(pointcloud_gt)
dist, idx = kdtree.query(pointcloud_pred)
if normals_pred is None:
return dist, None
normals_pred = normals_pred / np.linalg.norm(normals_pred, axis=-1, keepdims=True)
normals_gt = normals_gt / np.linalg.norm(normals_gt, axis=-1, keepdims=True)
normals_dot_product = (normals_gt[idx] * normals_pred).sum(axis=-1)
normals_dot_product = np.abs(normals_dot_product)
return dist, normals_dot_product
def eval_mesh( mesh_pred, mesh_gt, bb_min, bb_max, n_points=100000):
pointcloud_pred, idx = mesh_pred.sample(n_points, return_index=True)
pointcloud_pred = pointcloud_pred.astype(np.float32)
normals_pred = mesh_pred.face_normals[idx]
pointcloud_gt, idx = mesh_gt.sample(n_points, return_index=True)
pointcloud_gt = pointcloud_gt.astype(np.float32)
normals_gt = mesh_gt.face_normals[idx]
out_dict = eval_pointcloud(pointcloud_pred, pointcloud_gt, normals_pred, normals_gt)
"""
bb_len = bb_max - bb_min
bb_samples = np.random.rand(n_points*10, 3) * bb_len + bb_min
occ_pred = implicit_waterproofing(mesh_pred, bb_samples)[0]
occ_gt = implicit_waterproofing(mesh_gt, bb_samples)[0]
area_union = (occ_pred | occ_gt).astype(np.float32).sum()
area_intersect = (occ_pred & occ_gt).astype(np.float32).sum()
out_dict['iou'] = (area_intersect / area_union)
"""
return out_dict
def get_threshold_percentage(dist, thresholds):
''' Evaluates a point cloud.
Args:
dist (numpy array): calculated distance
thresholds (numpy array): threshold values for the F-score calculation
'''
in_threshold = [
(dist <= t).mean() for t in thresholds
]
return in_threshold
def calculate_fscore(gt: open3d.geometry.PointCloud, pr: open3d.geometry.PointCloud, th: float=0.01) -> typing.Tuple[float, float, float]:
'''Calculates the F-score between two point clouds with the corresponding threshold value.'''
d1 = open3d.compute_point_cloud_to_point_cloud_distance(gt, pr)
d2 = open3d.compute_point_cloud_to_point_cloud_distance(pr, gt)
if len(d1) and len(d2):
recall = float(sum(d < th for d in d2)) / float(len(d2))
precision = float(sum(d < th for d in d1)) / float(len(d1))
if recall+precision > 0:
fscore = 2 * recall * precision / (recall + precision)
else:
fscore = 0
else:
fscore = 0
precision = 0
recall = 0
return fscore, precision, recall
def eval_pointcloud(pointcloud_pred, pointcloud_gt, thresholds=np.linspace(1./1000, 1, 1000),
normals_pred=None, normals_gt=None):
pointcloud_pred = np.asarray(pointcloud_pred)
pointcloud_gt = np.asarray(pointcloud_gt)
# Completeness: how far are the points of the target point cloud
# from thre predicted point cloud
completeness, completeness_normals = distance_p2p(
pointcloud_gt, pointcloud_pred,
normals_gt, normals_pred
)
recall = get_threshold_percentage(completeness, thresholds)
completeness2 = completeness ** 2
completeness = completeness.mean()
completeness2 = completeness2.mean()
# Accuracy: how far are th points of the predicted pointcloud
# from the target pointcloud
accuracy, accuracy_normals = distance_p2p(
pointcloud_pred, pointcloud_gt,
normals_pred, normals_gt
)
precision = get_threshold_percentage(accuracy, thresholds)
accuracy2 = accuracy**2
accuracy = accuracy.mean()
accuracy2 = accuracy2.mean()
# Chamfer distance
chamfer_l2 = 0.5 * completeness2 + 0.5 * accuracy2
chamfer_l1 = 0.5 * completeness + 0.5 * accuracy
F = [
2 * precision[i] * recall[i] / (precision[i] + recall[i])
for i in range(len(precision))
]
if not normals_pred is None:
accuracy_normals = accuracy_normals.mean()
completeness_normals = completeness_normals.mean()
normals_correctness = (
0.5 * completeness_normals + 0.5 * accuracy_normals
)
else:
accuracy_normals = np.nan
completeness_normals = np.nan
normals_correctness = np.nan
"""
out_dict = {
'completeness': completeness,
'accuracy': accuracy,
'normals completeness': completeness_normals,
'normals accuracy': accuracy_normals,
'normals': normals_correctness,
'completeness2': completeness2,
'accuracy2': accuracy2,
'chamfer_l2': chamfer_l2,
'iou': np.nan
}
return out_dict
"""
return completeness2, accuracy2, chamfer_l1, chamfer_l2, F[4], F[9], F[14], F[19]
def eval(name, dict):
if 'scannet' in cfg.split_file:
room_name = name
scan_name = name
raw_name = cfg.raw_data_dir + '/{}/{}_vh_clean_2_scaled.off'.format(room_name, scan_name, scan_name)
mesh = trimesh.load(raw_name)
pointcloud_tgt = mesh.sample(100000)
dense_pcd = np.load(in_path + '/' +room_name + '/'+scan_name + '_dense_point_cloud_7.npz')['dense_point_cloud']
elif 'scenenn' in cfg.split_file:
room_name = name
scan_name = name
raw_name = cfg.raw_data_dir + '/{}/{}_scaled.off'.format(room_name, scan_name, scan_name)
mesh = trimesh.load(raw_name)
pointcloud_tgt = mesh.sample(100000)
dense_pcd = np.load(in_path + '/' +room_name + '/'+scan_name + '_dense_point_cloud_7.npz')['dense_point_cloud']
elif 's3dis' in cfg.split_file:
room_name = name.split('/')[1]
scan_name = name.split('/')[2]
raw_name = cfg.raw_data_dir + '/{}/{}/{}_scaled.off'.format(room_name, scan_name, scan_name)
mesh = trimesh.load(raw_name)
pointcloud_tgt = mesh.sample(100000)
dense_pcd = np.load(in_path + '/' +room_name + '/'+scan_name + '_dense_point_cloud_7.npz')['dense_point_cloud']
else:
room_name = name.split('/')[1]
scan_name = name.split('/')[2]
raw_name = cfg.raw_data_dir + '/{}/{}/{}.obj'.format(room_name, scan_name.split('_')[0], scan_name.split('_')[0])
mesh = trimesh.load(raw_name)
pointcloud_tgt = mesh.sample(100000)
dense_pcd = np.load(in_path + '/' +room_name + '/'+scan_name + '_dense_point_cloud_7.npz')['dense_point_cloud']
idx = np.random.choice(len(dense_pcd), 200000, replace=False)#np.random.randint(dense_pcd.shape[0], size=2*100000)
pointcloud = dense_pcd[idx]
eps = 0.007
x_max, x_min = pointcloud_tgt[:, 0].max(), pointcloud_tgt[:, 0].min()
y_max, y_min = pointcloud_tgt[:, 1].max(), pointcloud_tgt[:, 1].min()
z_max, z_min = pointcloud_tgt[:, 2].max(), pointcloud_tgt[:, 2].min()
# add small offsets
x_max, x_min = x_max + eps, x_min - eps
y_max, y_min = y_max + eps, y_min - eps
z_max, z_min = z_max + eps, z_min - eps
mask_x = (pointcloud[:, 0] <= x_max) & (pointcloud[:, 0] >= x_min)
mask_y = (pointcloud[:, 1] <= y_max) & (pointcloud[:, 1] >= y_min)
mask_z = (pointcloud[:, 2] <= z_max) & (pointcloud[:, 2] >= z_min)
mask = mask_x & mask_y & mask_z
pointcloud_new = pointcloud[mask]
# Subsample
print(scan_name, pointcloud_new.shape)
# if len(pointcloud_new)<100000:
# print(pointcloud_new.shape )
# idx_new = np.random.randint(len(pointcloud_new),size=10000)
idx_new= np.random.choice(len(pointcloud_new), 100000, replace=False)
pointcloud = pointcloud_new[idx_new]
x = eval_pointcloud(pointcloud, pointcloud_tgt)
dict[raw_name] = x
if __name__ == '__main__':
cfg = cfg_loader.get_config()
in_path = 'experiments/{}/{}/evaluation/{}'.format(cfg.exp_name,cfg.log_dir, cfg.ckpt)
p = Pool(cfg.num_cpus)
paths = np.load(cfg.split_file)['test']
paths = sorted(paths)
return_dict = Manager().dict()
p.map(partial(eval, dict=return_dict), paths)
p.close()
p.join()
n=0
list_1=[]
x_list = []
l1=[]
l2=[]
f1=[]
f2=[]
f3=[]
f4=[]
l_1=[]
l_2=[]
f_1=[]
f_2=[]
f_3=[]
f_4=[]
fail_list = []
new_dict = {}
for scan_name in return_dict.keys():
x = return_dict[scan_name]
new_dict[scan_name] = x
l_1.append(x[2])
l_2.append(x[3])
f_1.append(x[4])
f_2.append(x[5])
f_3.append(x[6])
f_4.append(x[7])
if x[3] > 1e-4:
n+=1
fail_list.append(x[3])
x_list.append(x)
list_1.append(scan_name)
else:
l1.append(x[2])
l2.append(x[3])
f1.append(x[4])
f2.append(x[5])
f3.append(x[6])
f4.append(x[7])
if len(fail_list) != 0:
print(len(l_1), n)
else:
print(len(l_1), n)
print(np.mean(l_1), np.median(l_1), np.mean(l_2), np.median(l_2), np.mean(f_1), np.mean(f_2), np.mean(f_3), np.mean(f_4))
a=[np.mean(l_1), np.median(l_1), np.mean(l_2), np.median(l_2), np.mean(f_1), np.mean(f_2), np.mean(f_3), np.mean(f_4)]
with open('experiments/{}/{}/evaluate_epoch{}.pkl'.format(cfg.exp_name,cfg.log_dir,cfg.ckpt), 'wb') as f:
pickle.dump(a, f)