-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
154 lines (126 loc) · 5.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import argparse
import yaml
import os
import tensorflow.compat.v1 as tf
from cwvae import build_model
from loggers.summary import Summary
from loggers.checkpoint import Checkpoint
from data_loader import *
import tools
def train_setup(cfg, loss):
session_config = tf.ConfigProto(device_count={"GPU": 1}, log_device_placement=False)
session = tf.Session(config=session_config)
step = tools.Step(session)
with tf.name_scope("optimizer"):
# Getting all trainable variables.
weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
# Creating optimizer.
optimizer = tf.keras.optimizers.Adam(learning_rate=cfg.lr, epsilon=1e-04)
# Computing gradients.
grads = optimizer.get_gradients(loss, weights)
grad_norm = tf.global_norm(grads)
# Clipping gradients by global norm, and applying gradient.
if cfg.clip_grad_norm_by is not None:
capped_grads = tf.clip_by_global_norm(grads, cfg.clip_grad_norm_by)[0]
capped_gvs = [
tuple((capped_grads[i], weights[i])) for i in range(len(weights))
]
apply_grads = optimizer.apply_gradients(capped_gvs)
else:
gvs = zip(grads, weights)
apply_grads = optimizer.apply_gradients(gvs)
return apply_grads, grad_norm, session, step
if __name__ == "__main__":
tf.disable_v2_behavior()
parser = argparse.ArgumentParser()
parser.add_argument(
"--logdir",
default=None,
type=str,
help="path to root log directory",
)
parser.add_argument(
"--datadir",
default=None,
type=str,
help="path to root data directory",
)
parser.add_argument(
"--config",
default=None,
type=str,
help="path to config yaml file",
required=True,
)
parser.add_argument(
"--base-config",
default="./configs/base_config.yml",
type=str,
help="path to base config yaml file",
)
args = parser.parse_args()
cfg = tools.read_configs(
args.config, args.base_config, datadir=args.datadir, logdir=args.logdir
)
# Creating model dir with experiment name.
exp_rootdir = os.path.join(cfg.logdir, cfg.dataset, tools.exp_name(cfg))
os.makedirs(exp_rootdir, exist_ok=True)
# Dumping config.
print(cfg)
with open(os.path.join(exp_rootdir, "config.yml"), "w") as f:
yaml.dump(dict(cfg), f, default_flow_style=False)
# Load dataset.
train_data_batch, val_data_batch = load_dataset(cfg)
# Build model.
model_components = build_model(cfg)
model = model_components["meta"]["model"]
# Setting up training.
apply_grads, grad_norm, session, step = train_setup(cfg, model.loss)
# Define summaries.
summary = Summary(exp_rootdir, save_gifs=cfg.save_gifs)
summary.build_summary(cfg, model_components, grad_norm=grad_norm)
# Define checkpoint saver for variables currently in session.
checkpoint = Checkpoint(exp_rootdir)
# Restore model (if exists).
if os.path.exists(checkpoint.log_dir_model):
print("Restoring model from {}".format(checkpoint.log_dir_model))
checkpoint.restore(session)
print("Will start training from step {}".format(step()))
else:
# Initialize all variables.
session.run(tf.global_variables_initializer())
# Start training.
print("Getting validation batches.")
val_batches = get_multiple_batches(val_data_batch, cfg.num_val_batches, session)
print("Training.")
while True:
try:
train_batch = get_single_batch(train_data_batch, session)
feed_dict_train = {model_components["training"]["obs"]: train_batch}
feed_dict_val = {model_components["training"]["obs"]: val_batches}
# Train one step.
session.run(fetches=apply_grads, feed_dict=feed_dict_train)
# Saving scalar summaries.
if step() % cfg.save_scalars_every == 0:
summaries = session.run(
summary.scalar_summary, feed_dict=feed_dict_train
)
summary.save(summaries, step(), True)
summaries = session.run(summary.scalar_summary, feed_dict=feed_dict_val)
summary.save(summaries, step(), False)
# Saving gif summaries.
if step() % cfg.save_gifs_every == 0:
summaries = session.run(summary.gif_summary, feed_dict=feed_dict_train)
summary.save(summaries, step(), True)
summaries = session.run(summary.gif_summary, feed_dict=feed_dict_val)
summary.save(summaries, step(), False)
# Saving model.
if step() % cfg.save_model_every == 0:
checkpoint.save(session)
if cfg.save_named_model_every and step() % cfg.save_named_model_every == 0:
checkpoint.save(session, save_dir="model_{}".format(step()))
step.increment()
except tf.errors.OutOfRangeError:
break
print("Training complete.")