-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclusters_algoritm.py
66 lines (48 loc) · 2.17 KB
/
clusters_algoritm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def clusters_selection_parametrs(data, X_tag, y_tag, cluster_alg = 'Kmeans'):
if cluster_alg == 'Kmeans':
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
X = data[X_tag]
if y_tag != None:
y = data[y_tag]
s_score_list = []
v_score_list = []
eps_list = np.linspace(0.1, 1, 10)
min_samples_list = [2, 3, 5, 8, 13]
result = []
for sample in min_samples_list:
if y_tag != None:
clustering =KMeans(n_clusters = sample).fit(X)
else:
clustering = KMeans(n_clusters = sample).fit(X)
s_score = silhouette_score(X, clustering.labels_)
result_ = ["метрика силуэтта %.3f" % s_score,
"min_samples V %.0f" % sample, ]
result.append(result_)
else:
from sklearn.cluster import DBSCAN
from sklearn.metrics import silhouette_score
from sklearn.metrics.cluster import v_measure_score
X = data[X_tag]
if y_tag != None:
y = data[y_tag]
s_score_list = []
v_score_list = []
eps_list = np.linspace(0.1, 1, 10)
min_samples_list = [2, 3, 5, 8, 13]
result = []
for sample in min_samples_list:
for eps in eps_list:
if y_tag != None:
clustering = DBSCAN(eps=eps, min_samples=sample).fit(X, y)
else:
clustering = DBSCAN(eps=eps, min_samples=sample).fit(X)
s_score = silhouette_score(X, clustering.labels_)
#v_score = v_measure_score(y, clustering.labels_)
result_ = ["метрика силуэтта %.3f" % s_score,
#"метрика V %.3f" % v_score,
"eps %.1f" % eps,
"min_samples V %.0f" % sample, ]
result.append(result_)
return (result)