-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoverlap.py
184 lines (141 loc) · 6.01 KB
/
overlap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
get overlap regions
"""
import argparse
import logging
import os
import os.path as op
import sys
import pandas as pd
import numpy as np
from pathlib import Path
from pyranges import PyRanges
from cphasing.utilities import ( cmd_exists,
get_contig_length,
get_contig_size_from_fasta,
xopen
)
from line_profiler import profile
logger = logging.getLogger(__name__)
class OverlapFinder:
"""
Get overlap regions from gfa
"""
def __init__(self, gfa):
self.gfa = gfa
def parse_gfa(self):
length_db = {}
rd_db = {}
overlap_db = []
with xopen(self.gfa) as f:
for line in f:
if line.startswith("L"):
parts = line.strip().split("\t")
contig1, starnd1, contig2, strand2, overlap = parts[1], parts[2], parts[3], parts[4], parts[5]
overlap = overlap.strip("M")
overlap = int(overlap)
overlap_db.append((contig1, starnd1, contig2, strand2, overlap))
elif line.startswith("S"):
parts = line.strip().split("\t")
contig, _, length, rd = parts[1], parts[2], parts[3], parts[4]
length = int(length.split(":")[-1])
rd = int(rd.split(":")[-1])
length_db[contig] = length
rd_db[contig] = rd
class OverlapFinder2:
"""
Get overlap regions from selfalign
"""
PAF_HADER = ["contig1", "length1", "start1", "end1", "strand",
"contig2", "length2", "start2", "end2",
"matches", "aligns", "mapq", "dv"]
META = {
"contig1": "object",
"length1": int,
"start1": int,
"end1": int,
"strand": "category",
"contig2": "object",
"length2": int,
"start2": int,
"end2": int,
"matches": int,
"aligns": int,
"mapq": int,
"dv": "object"
}
def __init__(self, fasta,
aligner="minigraph",
log_dir="log",
threads=10):
self.fasta = Path(fasta )
self.prefix = Path(fasta).stem
self.aligner = aligner
self.threads = threads
self.contigsizes = get_contig_length(fasta)
self.contigsizes = get_contig_size_from_fasta(self.fasta)
self.paf = f"{self.prefix}.self.mapping.paf"
self.log_dir = Path(log_dir)
self.log_dir.mkdir(parents=True, exist_ok=True)
if not cmd_exists(self.aligner):
logger.error(f'No such command of `{self.aligner}`')
sys.exit()
def mapping(self):
if self.aligner == "minigraph":
cmd = ["minigraph", "-xasm", "-N", str(100),
"--secondary=yes",
str(self.fasta), str(self.fasta),
"-t", str(self.threads)]
def read_paf(self):
logger.info(f"Load alignments results `{self.paf}`")
try:
df = pd.read_csv(self.paf, sep='\s+', header=None, usecols=list(range(12)) + [16],
index_col=None, names=self.PAF_HADER)
df = df.dropna().astype(self.META)
except pd.errors.ParserError:
df = pd.read_csv(self.paf, sep='\s+', header=None, usecols=list(range(12)) + [16],
index_col=None, names=self.PAF_HADER)
df = df.dropna().astype(self.META)
# df.drop(['length1', 'length2'], inplace=True, axis=1)
df['dv'] = df['dv'].str.split(":").map(lambda x: x[-1]).astype(np.float64)
df['identity'] = df['matches'] / df['aligns']
df.query('dv < 0.01', inplace=True)
df.query("identity > 0.85", inplace=True)
return df
@profile
def get_overlap_regions(self):
min_length = 5000
def func(row):
return (((row['start1'] - min_length) < 0 or (row['length1'] - row['end1'] < min_length))
and
((row['start2'] - min_length) < 0 or (row['length2'] - row['end2'] < min_length))
)
self.paf_df = self.paf_df[self.paf_df.apply(func, axis=1)]
self.paf_df.loc[(self.paf_df['start1'] - min_length) < 0, 'start1'] = 0
self.paf_df.loc[(self.paf_df['start2'] - min_length) < 0, 'start2'] = 0
idx = self.paf_df.loc[(self.paf_df['length1'] - self.paf_df['end1']) < min_length].index
self.paf_df.loc[idx, 'end1'] = self.paf_df.loc[idx, 'length1']
idx = self.paf_df.loc[(self.paf_df['length2'] - self.paf_df['end2']) < min_length].index
self.paf_df.loc[idx, 'end2'] = self.paf_df.loc[idx, 'length2']
df1 = self.paf_df[['contig1', 'start1', 'end1']]
df1.columns = ["Chromosome", "Start", "End"]
df2 = self.paf_df[['contig2', 'start2', 'end2']]
df2.columns = ["Chromosome", "Start", "End"]
df = pd.concat([df1, df2], axis=0)
df.to_csv(f"{self.prefix}.tmp.overlap.bed", sep="\t", index=False, header=False)
cmd = (f"sort -k1,1V -k 2,2n {self.prefix}.tmp.overlap.bed | "
f"bedtools merge -i - 2>/dev/null > {self.prefix}.tmp2.overlap.bed")
os.system(cmd)
cmd = (f"awk '{{print $1,0,$2}}' OFS='\\t' {self.contigsizes} | "
f"bedtools subtract -a - -b {self.prefix}.tmp2.overlap.bed 2>/dev/null > {self.prefix}.overlap.bed")
os.system(cmd)
if Path(f"{self.prefix}.tmp.overlap.bed").exists():
os.remove(f"{self.prefix}.tmp.overlap.bed")
if Path(f"{self.prefix}.tmp2.overlap.bed").exists():
os.remove(f"{self.prefix}.tmp2.overlap.bed")
return f"{self.prefix}.overlap.bed"
def run(self):
self.paf_df = self.read_paf()
self.overlap_df = self.get_overlap_regions()