-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_FedIIC.py
214 lines (191 loc) · 8.73 KB
/
train_FedIIC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import sys
import copy
import logging
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from utils.FedAvg import FedAvg
from dataset.get_dataset import get_datasets
from val import compute_bacc, compute_loss_of_classes
from networks.networks import efficientb0
from utils.local_training import LocalUpdate
from utils.utils import set_seed, TensorDataset, classify_label
from utils.sample_dirichlet import clients_indices
def args_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str,
default='isic2019', help='dataset name')
parser.add_argument('--exp', type=str,
default='FedIIC', help='experiment name')
parser.add_argument('--batch_size', type=int,
default=2, help='batch_size per gpu')
parser.add_argument('--base_lr', type=float, default=3e-4,
help='base learning rate')
parser.add_argument('--alpha', type=float,
default=1.0, help='parameter for non-iid')
parser.add_argument('--k1', type=float, default=2.0,
help='weight for Intra-client contrastive learning')
parser.add_argument('--k2', type=float, default=2.0,
help='weight for Inter-client contrastive learning')
parser.add_argument('--d', type=float, default=0.25,
help='difficulty')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--gpu', type=str, default='1', help='GPU to use')
parser.add_argument('--local_ep', type=int,
default=1, help='local epoch')
parser.add_argument('--rounds', type=int, default=200, help='rounds')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = args_parser()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
# ------------------------------ deterministic or not ------------------------------
if args.deterministic:
cudnn.benchmark = False
cudnn.deterministic = True
set_seed(args)
# ------------------------------ output files ------------------------------
outputs_dir = 'outputs'
if not os.path.exists(outputs_dir):
os.mkdir(outputs_dir)
exp_dir = os.path.join(outputs_dir, args.exp + '_' + '_' + str(args.local_ep) + '_' + str(args.k1) + '_' + str(args.k2))
if not os.path.exists(exp_dir):
os.mkdir(exp_dir)
models_dir = os.path.join(exp_dir, 'models')
if not os.path.exists(models_dir):
os.mkdir(models_dir)
logs_dir = os.path.join(exp_dir, 'logs')
if not os.path.exists(logs_dir):
os.mkdir(logs_dir)
tensorboard_dir = os.path.join(exp_dir, 'tensorboard')
if not os.path.exists(tensorboard_dir):
os.mkdir(tensorboard_dir)
logging.basicConfig(filename=logs_dir+'/logs.txt', level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
writer = SummaryWriter(tensorboard_dir)
# ------------------------------ dataset and dataloader ------------------------------
train_dataset, val_dataset, test_dataset = get_datasets(args)
val_loader = DataLoader(
dataset=val_dataset, batch_size=32, shuffle=False, num_workers=4)
if args.dataset == "isic2019":
args.n_clients = 10
elif args.datasets == "ich":
args.n_clients = 20
else:
raise
# ------------------------------ global and local settings ------------------------------
n_classes = train_dataset.n_classes
net_glob = efficientb0(n_classes=n_classes, args=args).cuda()
net_glob.train()
w_glob = net_glob.state_dict()
w_locals = []
trainer_locals = []
net_locals = []
user_id = list(range(args.n_clients))
# Here, we follow CreFF (https://arxiv.org/abs/2204.13399).
list_label2indices = classify_label(train_dataset.targets, n_classes)
dict_users = clients_indices(list_label2indices, n_classes, args.n_clients, args.alpha, args.seed)
dict_len = [len(dict_users[id]) for id in user_id]
for id in user_id:
trainer_locals.append(LocalUpdate(
args, id, copy.deepcopy(train_dataset), dict_users[id]))
w_locals.append(copy.deepcopy(w_glob))
net_locals.append(copy.deepcopy(net_glob).cuda())
images_all = {}
labels_all = {}
for id in user_id: # to compute loss quickly
local_set = copy.deepcopy(trainer_locals[id].local_dataset)
images_all[id] = torch.cat([torch.unsqueeze(local_set[i][0][0], dim=0)
for i in range(len(local_set))])
labels_all[id] = torch.tensor([int(local_set[i][1])
for i in range(len(local_set))]).long()
print(id, ':', len(images_all[id]), labels_all[id])
# ------------------------------ begin training ------------------------------
set_seed(args)
best_performance = 0.
lr = args.base_lr
acc = []
for com_round in range(args.rounds):
logging.info(f'\n======================> round: {com_round} <======================')
loss_locals = []
writer.add_scalar('train/lr', lr, com_round)
with torch.no_grad():
class_embedding = w_glob["model._fc.weight"].detach().clone().cuda()
feature_avg = net_glob.projector(class_embedding).detach().clone()
print("similarity before")
print(torch.matmul(F.normalize(feature_avg, dim=1),
F.normalize(feature_avg, dim=1).T))
feature_avg.requires_grad = True
optimizer_f = torch.optim.SGD([feature_avg], lr=0.1)
mask = torch.ones((n_classes, n_classes)) - torch.eye((n_classes))
mask = mask.cuda()
for i in range(1000):
feature_avg_n = F.normalize(feature_avg, dim=1)
cos_sim = torch.matmul(feature_avg_n, feature_avg_n.T)
cos_sim = ((cos_sim * mask).max(1)[0]).sum()
optimizer_f.zero_grad()
cos_sim.backward()
optimizer_f.step()
print("similarity after")
print(torch.matmul(F.normalize(feature_avg, dim=1),
F.normalize(feature_avg, dim=1).T))
loss_matrix = torch.zeros(args.n_clients, n_classes)
class_num = torch.zeros(args.n_clients, n_classes)
net_glob = net_glob.cuda()
for id in user_id:
class_num[id] = torch.tensor(
trainer_locals[id].local_dataset.get_num_class_list())
dataset_client = TensorDataset(images_all[id], labels_all[id])
dataLoader_client = DataLoader(
dataset_client, batch_size=32, shuffle=False)
loss_matrix[id] = compute_loss_of_classes(
net_glob, dataLoader_client, n_classes)
num = torch.sum(class_num, dim=0, keepdim=True)
logging.info("class-num of this round")
logging.info(num)
loss_matrix = loss_matrix / (1e-5 + num)
loss_class = torch.sum(loss_matrix, dim=0)
logging.info("loss of this round")
logging.info(loss_class)
# local training
for id in user_id:
trainer_locals[id].lr = lr
local = trainer_locals[id]
local.loss_class = loss_class
net_local = net_locals[id]
w, loss = local.train_FedIIC(copy.deepcopy(
net_local), copy.deepcopy(feature_avg), writer)
w_locals[id] = copy.deepcopy(w)
loss_locals.append(copy.deepcopy(loss))
# upload and download
with torch.no_grad():
w_glob = FedAvg(w_locals, dict_len)
net_glob.load_state_dict(w_glob)
for id in user_id:
net_locals[id].load_state_dict(w_glob)
# global validation
net_glob = net_glob.cuda()
bacc_g, conf_matrix = compute_bacc(
net_glob, val_loader, get_confusion_matrix=True, args=args)
writer.add_scalar(
f'glob/bacc_val', bacc_g, com_round)
logging.info('global conf_matrix')
logging.info(conf_matrix)
# save model
if bacc_g > best_performance:
best_performance = bacc_g
torch.save(net_glob.state_dict(), models_dir +
f'/best_model_{com_round}_{best_performance}.pth')
torch.save(net_glob.state_dict(), models_dir+'/best_model.pth')
logging.info(f'best bacc: {best_performance}, now bacc: {bacc_g}')
acc.append(bacc_g)
writer.close()
logging.info(acc)