-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.xml
20 lines (18 loc) · 2.33 KB
/
index.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>My New Hugo Site</title>
<link>http://wwww6662003.github.io/</link>
<description>Recent content on My New Hugo Site</description>
<generator>Hugo -- gohugo.io</generator>
<language>zh-CN</language>
<lastBuildDate>Sun, 26 Jun 2022 17:55:43 +0800</lastBuildDate><atom:link href="http://wwww6662003.github.io/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>王教授推荐学习</title>
<link>http://wwww6662003.github.io/post/%E7%8E%8B%E6%95%99%E6%8E%88%E6%8E%A8%E8%8D%90%E5%AD%A6%E4%B9%A0/</link>
<pubDate>Sun, 26 Jun 2022 17:55:43 +0800</pubDate>
<guid>http://wwww6662003.github.io/post/%E7%8E%8B%E6%95%99%E6%8E%88%E6%8E%A8%E8%8D%90%E5%AD%A6%E4%B9%A0/</guid>
<description>wwww6662003/wwww6662003.github.io: 个人主页 https://github.com/wwww6662003/wwww6662003.github.io 王维 · My New Hugo Site https://wwww6662003.github.io/ D:\Scoop\apps\Hugo\0.101.0\Sites\blog\public 王教授推荐三篇文章学习: 初步订在6月29号上午,每个人准备一下,咱们进行学习交流,大家看看如何? WIREs CMS | 基于深度学习的药物重定位:方法、数据库和应用 https://mp.weixin.qq.com/s/nounUr5T5xjKmobPTOT5Wg 深度学习从入门到精通 - 知乎 https://www.zhihu.com/column/c_1375953490200608768 Nat. Mach. Intel. | 用机器学习发现肉眼不可见的新冠肺部长期病变 https://mp.weixin.qq.com/s/YXwM_UN1R3X952DuAmJx7A BIB | 预测基于相似性的药物-靶点相互作用的异构网络嵌入框架 https://mp.weixin.qq.com/s/XsSf_78GqYPNwvyDbnLTzQ 一、(文章源码)Nat. Mach. Intel. | 用机器学习发现肉眼不可见的新冠肺部长期病变 https://mp.weixin.qq.com/s/YXwM_UN1R3X952DuAmJx7A An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors https://www.nature.com/articles/s42256-022-00483-7.pdf DLPE-method/colab.ipynb at master · LongxiZhou/DLPE-method https://github.com/LongxiZhou/DLPE-method/blob/master/colab.ipynb 1.文章名字:An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors 2.</description>
</item>
</channel>
</rss>