-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
143 lines (108 loc) · 4.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import re
import os
import time
import pickle
import random
import logging
import argparse
import yaml
import easydict
from hashlib import md5
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
from model import ImmutableLM
from dataset import PromptCorpus
from utils import dynamic_batching
import debugger
logger = logging.getLogger(__name__)
def init_model(args):
model = ImmutableLM(args.model)
if torch.cuda.is_available():
model.cuda()
return model
def inference_mode(model: ImmutableLM, dataset: DataLoader, restricted_token):
result = []
for data in tqdm(dataset):
with torch.no_grad():
model.eval()
model.backbone.eval()
output = model(data, restricted_token=restricted_token)
result.append(output)
return result
def generation_mode(model: ImmutableLM, dataset: DataLoader, config: easydict.EasyDict, args):
template_text = re.sub("({.*?})|\'", "", config.template[1:]).replace("\\n", '\n')
label_text = ' '.join(config.label_mapping.values())
allowed_text = template_text + " " + label_text
allowed_tokens = tuple(model.tokenizer.encode(allowed_text))
print(f"allowed tokens {model.tokenizer.decode(allowed_tokens)}")
data = iter(dataset).__next__()
with torch.no_grad():
model.eval()
model.backbone.eval()
# output = model.balance_generate(
output = model.generate(
data, max_length=args.max_generation_length, no_repeat_ngram_size=args.ngram,
allowed_tokens=allowed_tokens,
prefix=config.template[2:].split("{")[0],
temperature=args.temperature, do_sample=args.do_sample, top_k=args.topk)
result = output
return result
def get_config_hash(cfg):
label_mapping_hash = md5(str.encode('-'.join(tuple(cfg.label_mapping.values())))).hexdigest()[:3]
template_hash = md5(str.encode(cfg.template)).hexdigest()[:3]
hash_str = label_mapping_hash + template_hash
return hash_str
def main(corpus_config, args):
cfg = easydict.EasyDict(corpus_config)
print(cfg)
corpus = PromptCorpus(**cfg)
corpus_config["model"] = args.model
corpus_config["temperature"] = args.temperature
corpus_config["do_sample"] = args.do_sample
corpus_config["topk"] = args.topk
dataset = DataLoader(corpus, batch_size=1, shuffle=False)
model = init_model(args)
cfg_fname = os.path.split(args.config)[-1].replace(".yaml", "")
cfg_hash_str = get_config_hash(cfg)
if args.generate:
result = generation_mode(model=model, dataset=dataset, args=args, config=cfg)
dump_fname = f"generate_{args.ngram}gram_{cfg_fname}_{cfg.n_shot}_shot_{args.model}_seed{args.seed}_{cfg.sample_mode}_temperature{args.temperature}_top{args.topk}_hash{cfg_hash_str}.pkl"
else:
result = inference_mode(model=model, dataset=dataset, restricted_token=corpus.restricted_token)
dump_fname = f"{cfg_fname}_{cfg.n_shot}_shot_{args.model}_seed{args.seed}_{cfg.sample_mode}_hash{cfg_hash_str}.pkl"
output_ckpt = {"result": result, "config": corpus_config}
pickle.dump(output_ckpt,
open(os.path.join(args.output, dump_fname), 'wb'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config", "-c", type=str, required=True)
parser.add_argument("--model", type=str, default="gpt2")
parser.add_argument("--seed", type=int, default=999)
parser.add_argument("--nshot", "-n", type=int, default=0)
parser.add_argument("--test_data_path", type=str, default="")
parser.add_argument("--output", "-o", type=str, default="default_output")
parser.add_argument("--generate", action="store_true")
parser.add_argument("--ngram", type=int, default=0)
parser.add_argument("--max_generation_length", "-l", type=int, default=128)
parser.add_argument("--temperature", "-t", type=float, default=1.0)
parser.add_argument("--do_sample", action="store_true")
parser.add_argument("--topk", type=int, default=-1)
parser.add_argument("--train_sample_mode", type=str, default="")
args = parser.parse_args()
print(args)
random.seed(args.seed)
if not os.path.exists(args.output):
os.makedirs(args.output)
corpus_config = yaml.safe_load(open(args.config))
if args.test_data_path:
print(f"override test data path from {corpus_config['test_data_path']} to {args.test_data_path}")
corpus_config['test_data_path'] = args.test_data_path
if args.nshot > 0:
print(f"override n-shot from {corpus_config['n_shot']} to {args.nshot}")
corpus_config['n_shot'] = args.nshot
if args.train_sample_mode:
print(f"override train data sample mode from {corpus_config['sample_mode']} to {args.train_sample_mode}")
corpus_config["sample_mode"] = args.train_sample_mode
main(corpus_config=corpus_config, args=args)