-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathLM_extractor.py
160 lines (125 loc) · 5.13 KB
/
LM_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import pickle
import time
from datetime import timedelta
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import *
import utils.gen_utils as utils
from utils.data_utils import MyMapDataset
import sys
from pathlib import Path
sys.path.insert(0, os.getcwd())
start = time.time()
if torch.cuda.is_available():
DEVICE = torch.device("cuda")
print("GPU found (", torch.cuda.get_device_name(torch.cuda.current_device()), ")")
torch.cuda.set_device(torch.cuda.current_device())
print("num device avail: ", torch.cuda.device_count())
else:
DEVICE = torch.device("cpu")
print("running on cpu")
def extract_bert_features(input_ids, mode, n_hl):
"""Extract bert embedding for each input."""
if mode == "docbert":
# print(input_ids.shape)
tmphidden_features = []
input_ids = input_ids.permute(1, 0, 2)
for jj in range(input_ids.shape[0]):
tmp = []
if input_ids[jj][0][0] == 0:
break
bert_output = model(input_ids[jj])
for ii in range(n_hl):
if embed_mode == "mean":
tmp.append((bert_output[2][ii + 1].cpu().numpy()).mean(axis=1))
elif embed_mode == "cls":
tmp.append(bert_output[2][ii + 1][:, 0, :].cpu().numpy())
tmphidden_features.append(tmp)
tmphidden_features = np.array(tmphidden_features)
hidden_features.append(tmphidden_features.mean(axis=0))
else:
tmp = []
bert_output = model(input_ids)
# bert_output[2](this id gives all BERT outputs)[ii+1](which BERT layer)[:,0,:](taking the <CLS> output)
for ii in range(n_hl):
if embed_mode == "cls":
tmp.append(bert_output[2][ii + 1][:, 0, :].cpu().numpy())
elif embed_mode == "mean":
tmp.append((bert_output[2][ii + 1].cpu().numpy()).mean(axis=1))
hidden_features.append(np.array(tmp))
return hidden_features
def get_model(embed):
# * Model | Tokenizer | Pretrained weights shortcut
# MODEL=(DistilBertModel, DistilBertTokenizer, 'distilbert-base-uncased')
if embed == "bert-base":
n_hl = 12
hidden_dim = 768
MODEL = (BertModel, BertTokenizer, "bert-base-uncased")
elif embed == "bert-large":
n_hl = 24
hidden_dim = 1024
MODEL = (BertModel, BertTokenizer, "bert-large-uncased")
elif embed == "albert-base":
n_hl = 12
hidden_dim = 768
MODEL = (AlbertModel, AlbertTokenizer, "albert-base-v2")
elif embed == "albert-large":
n_hl = 24
hidden_dim = 1024
MODEL = (AlbertModel, AlbertTokenizer, "albert-large-v2")
model_class, tokenizer_class, pretrained_weights = MODEL
# load the LM model and tokenizer from the HuggingFace Transformers library
model = model_class.from_pretrained(
pretrained_weights, output_hidden_states=True
) # output_attentions=False
tokenizer = tokenizer_class.from_pretrained(pretrained_weights, do_lower_case=True)
return model, tokenizer, n_hl, hidden_dim
if __name__ == "__main__":
# argument extractor
(
dataset,
token_length,
batch_size,
embed,
op_dir,
mode,
embed_mode,
) = utils.parse_args_extractor()
print(
"\n{} | {} | {} | {} | {}\n".format(
dataset, embed, token_length, mode, embed_mode
)
)
batch_size = int(32)
model, tokenizer, n_hl, hidden_dim = get_model(embed)
# create a class which can be passed to the pyTorch dataloader. responsible for returning tokenized and encoded values of the dataset
# this class will have __getitem__(self,idx) function which will return input_ids and target values
map_dataset = MyMapDataset(dataset, tokenizer, token_length, DEVICE, mode)
data_loader = DataLoader(dataset=map_dataset, batch_size=batch_size, shuffle=False,)
if DEVICE == torch.device("cuda"):
model = model.cuda()
# model.parameters() returns a generator obj
# print('model loaded to gpu? ', next(model.parameters()).is_cuda)
print(
"\ngpu mem alloc: ", round(torch.cuda.memory_allocated() * 1e-9, 2), " GB"
)
print("starting to extract LM embeddings...")
hidden_features = []
all_targets = []
all_author_ids = []
# get bert embedding for each input
for author_ids, input_ids, targets in data_loader:
with torch.no_grad():
all_targets.append(targets.cpu().numpy())
all_author_ids.append(author_ids.cpu().numpy())
extract_bert_features(input_ids, mode, n_hl)
Path(op_dir).mkdir(parents=True, exist_ok=True)
pkl_file_name = dataset + "-" + embed + "-" + embed_mode + "-" + mode + ".pkl"
file = open(os.path.join(op_dir, pkl_file_name), "wb")
pickle.dump(zip(all_author_ids, hidden_features, all_targets), file)
file.close()
# print(timedelta(seconds=int(time.time() - start)), end=' ')
print("extracting embeddings for {} dataset: DONE!".format(dataset))