-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py
107 lines (106 loc) · 3.76 KB
/
pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
_base_ = [
'../_base_/datasets/nus-mono3d.py', '../_base_/models/pgd.py',
'../_base_/schedules/mmdet_schedule_1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)),
bbox_head=dict(
pred_bbox2d=True,
group_reg_dims=(2, 1, 3, 1, 2,
4), # offset, depth, size, rot, velo, bbox2d
reg_branch=(
(256, ), # offset
(256, ), # depth
(256, ), # size
(256, ), # rot
(), # velo
(256, ) # bbox2d
),
loss_depth=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
bbox_coder=dict(
type='PGDBBoxCoder',
base_depths=((31.99, 21.12), (37.15, 24.63), (39.69, 23.97),
(40.91, 26.34), (34.16, 20.11), (22.35, 13.70),
(24.28, 16.05), (27.26, 15.50), (20.61, 13.68),
(22.74, 15.01)),
base_dims=((4.62, 1.73, 1.96), (6.93, 2.83, 2.51),
(12.56, 3.89, 2.94), (11.22, 3.50, 2.95),
(6.68, 3.21, 2.85), (6.68, 3.21, 2.85),
(2.11, 1.46, 0.78), (0.73, 1.77, 0.67),
(0.41, 1.08, 0.41), (0.50, 0.99, 2.52)),
code_size=9)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.05 for 2-dim velocity and 0.2 for 4-dim 2D distance targets
train_cfg=dict(code_weight=[
1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05, 0.2, 0.2, 0.2, 0.2
]),
test_cfg=dict(nms_pre=1000, nms_thr=0.8, score_thr=0.01, max_per_img=200))
class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=True,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(
type='Collect3D',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers2d', 'depths'
]),
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='MultiScaleFlipAug',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='RandomFlip3D'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(
lr=0.004, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
total_epochs = 12
evaluation = dict(interval=4)
runner = dict(max_epochs=total_epochs)