-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_few_shot.py
145 lines (116 loc) · 6.55 KB
/
test_few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
from dataloader import get_loader
from models.model_main import ModelMain
from models.transformers import denumericalize
from options import get_parser_main_model
from data_utils.svg_utils import render
from models.util_funcs import svg2img, cal_iou
def test_main_model(opts):
dir_res = os.path.join("./experiments/", opts.name_exp, "results")
test_loader = get_loader(opts.data_root, opts.img_size, opts.language, opts.char_num, opts.max_seq_len, opts.dim_seq, opts.batch_size, 'test')
model_main = ModelMain(opts)
path_ckpt = os.path.join('experiments', opts.name_exp, 'checkpoints', opts.name_ckpt)
model_main.load_state_dict(torch.load(path_ckpt)['model'])
model_main.cuda()
model_main.eval()
with torch.no_grad():
for test_idx, test_data in enumerate(test_loader):
for key in test_data: test_data[key] = test_data[key].cuda()
print("testing font %04d ..."%test_idx)
dir_save = os.path.join(dir_res, "%04d"%test_idx)
if not os.path.exists(dir_save):
os.mkdir(dir_save)
os.mkdir(os.path.join(dir_save, "imgs"))
os.mkdir(os.path.join(dir_save, "svgs_single"))
os.mkdir(os.path.join(dir_save, "svgs_merge"))
svg_merge_dir = os.path.join(dir_save, "svgs_merge")
iou_max = np.zeros(opts.char_num)
idx_best_sample = np.zeros(opts.char_num)
# syn_svg_merge_f = open(os.path.join(svg_merge_dir, f"{opts.name_ckpt}_syn_merge_{test_idx}_rand_{sample_idx}.html"), 'w')
syn_svg_merge_f = open(os.path.join(svg_merge_dir, f"{opts.name_ckpt}_syn_merge_{test_idx}.html"), 'w')
for sample_idx in range(opts.n_samples):
ret_dict_test, loss_dict_test = model_main(test_data, mode='test')
svg_sampled = ret_dict_test['svg']['sampled_1']
sampled_svg_2 = ret_dict_test['svg']['sampled_2']
img_trg = ret_dict_test['img']['trg']
img_output = ret_dict_test['img']['out']
trg_seq_gt = ret_dict_test['svg']['trg']
img_sample_merge = torch.cat((img_trg.data, img_output.data), -2)
save_file_merge = os.path.join(dir_save, "imgs", f"merge_{opts.img_size}.png")
save_image(img_sample_merge, save_file_merge, nrow=8, normalize=True)
for char_idx in range(opts.char_num):
img_gt = (1.0 - img_trg[char_idx,...]).data
save_file_gt = os.path.join(dir_save,"imgs", f"{char_idx:02d}_gt.png")
save_image(img_gt, save_file_gt, normalize=True)
img_sample = (1.0 - img_output[char_idx,...]).data
save_file = os.path.join(dir_save,"imgs", f"{char_idx:02d}_{opts.img_size}.png")
save_image(img_sample, save_file, normalize=True)
# write results w/o parallel refinement
svg_dec_out = svg_sampled.clone().detach()
for i, one_seq in enumerate(svg_dec_out):
syn_svg_outfile = os.path.join(os.path.join(dir_save, "svgs_single"), f"syn_{i:02d}_{sample_idx}_wo_refine.svg")
syn_svg_f_ = open(syn_svg_outfile, 'w')
try:
svg = render(one_seq.cpu().numpy())
syn_svg_f_.write(svg)
# syn_svg_merge_f.write(svg)
if i > 0 and i % 13 == 12:
syn_svg_f_.write('<br>')
# syn_svg_merge_f.write('<br>')
except:
continue
syn_svg_f_.close()
# write results w/ parallel refinement
svg_dec_out = sampled_svg_2.clone().detach()
for i, one_seq in enumerate(svg_dec_out):
syn_svg_outfile = os.path.join(os.path.join(dir_save, "svgs_single"), f"syn_{i:02d}_{sample_idx}_refined.svg")
syn_svg_f = open(syn_svg_outfile, 'w')
try:
svg = render(one_seq.cpu().numpy())
syn_svg_f.write(svg)
#syn_svg_merge_f.write(svg)
#if i > 0 and i % 13 == 12:
# syn_svg_merge_f.write('<br>')
except:
continue
syn_svg_f.close()
syn_img_outfile = syn_svg_outfile.replace('.svg', '.png')
svg2img(syn_svg_outfile, syn_img_outfile, img_size=opts.img_size)
iou_tmp, l1_tmp = cal_iou(syn_img_outfile, os.path.join(dir_save, "imgs", f"{i:02d}_{opts.img_size}.png"))
iou_tmp = iou_tmp
if iou_tmp > iou_max[i]:
iou_max[i] = iou_tmp
idx_best_sample[i] = sample_idx
for i in range(opts.char_num):
# print(idx_best_sample[i])
syn_svg_outfile_best = os.path.join(os.path.join(dir_save, "svgs_single"), f"syn_{i:02d}_{int(idx_best_sample[i])}_refined.svg")
syn_svg_merge_f.write(open(syn_svg_outfile_best, 'r').read())
if i > 0 and i % 13 == 12:
syn_svg_merge_f.write('<br>')
svg_target = trg_seq_gt.clone().detach()
tgt_commands_onehot = F.one_hot(svg_target[:, :, :1].long(), 4).squeeze()
tgt_args_denum = denumericalize(svg_target[:, :, 1:])
svg_target = torch.cat([tgt_commands_onehot, tgt_args_denum], dim=-1)
for i, one_gt_seq in enumerate(svg_target):
# gt_svg_outfile = os.path.join(os.path.join(dir_save, "svgs_single"), f"gt_{i:02d}.svg")
# gt_svg_f = open(gt_svg_outfile, 'w')
gt_svg = render(one_gt_seq.cpu().numpy())
# gt_svg_f.write(gt_svg)
syn_svg_merge_f.write(gt_svg)
# gt_svg_f.close()
if i > 0 and i % 13 == 12:
syn_svg_merge_f.write('<br>')
syn_svg_merge_f.close()
def main():
opts = get_parser_main_model().parse_args()
opts.name_exp = opts.name_exp + '_' + opts.model_name
experiment_dir = os.path.join("./experiments", opts.name_exp)
print(f"Testing on experiment {opts.name_exp}...")
# Dump options
test_main_model(opts)
if __name__ == "__main__":
main()