forked from researcher2653/lcsorm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConstant Change Model R Code.R
60 lines (51 loc) · 1.09 KB
/
Constant Change Model R Code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
library(readxl)
mydata <- read_excel("mydata.xlsx")
View(mydata)
#import your data
library (lavaan)
CC.Model <- '
# Latent True Scores
lpay1 =~ 1*pay_sat1
lpay2 =~ 1*pay_sat2
lpay3 =~ 1*pay_sat3
lpay4 =~ 1*pay_sat4
# Autoregressions
lpay2 ~ 1*lpay1
lpay3 ~ 1*lpay2
lpay4 ~ 1*lpay3
# Latent Change Factors
dpay2 =~ 1*lpay2
dpay3 =~ 1*lpay3
dpay4 =~ 1*lpay4
# Proportional Change Effects - Constrained to Zero
dpay2 ~0*lpay1
dpay3 ~0*lpay2
dpay4 ~0*lpay3
# Constant Change and Intercept
B0 =~ 1*lpay1
B1 =~ 1*dpay2 + 1*dpay3 + 1*dpay4
B0 ~ 1
B1 ~ 1
B0 ~~ B0
B1 ~~ B1
B0 ~~ B1
# Additional Constraints
pay_sat1 ~~resvar*pay_sat1
pay_sat2 ~~resvar*pay_sat2
pay_sat3 ~~resvar*pay_sat3
pay_sat4 ~~resvar*pay_sat4
lpay2 ~~ 0*lpay2
lpay3 ~~ 0*lpay3
lpay4 ~~ 0*lpay4
dpay2 ~~ 0*dpay2
dpay2 ~~ 0*dpay3
dpay2 ~~ 0*dpay4
dpay3 ~~ 0*dpay3
dpay3 ~~ 0*dpay4
dpay4 ~~ 0*dpay4
pay_sat1 ~ 0
pay_sat2 ~ 0
pay_sat3 ~ 0
pay_sat4 ~ 0'
CC.fit<-sem(CC.Model, data= mydata, missing = "fiml", estimator ="ml")
summary (CC.fit, fit.measures = T)