-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwrappers.py
253 lines (211 loc) · 7.87 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gym
import numpy as np
from collections import deque
from gym.spaces import Box
from .img_sources import make_img_source
class CastObs(gym.ObservationWrapper):
def __init__(self, env):
super().__init__(env)
if self.env.observation_space.dtype != np.uint8:
self._observation_space = gym.spaces.Box(
low=self.env.observation_space.low,
high=self.env.observation_space.high,
shape=self.env.observation_space.shape,
dtype=np.float32,
)
def observation(self, observation):
if observation.dtype != np.uint8:
return observation.astype(np.float32)
else:
return observation
class TimeLimit(gym.Wrapper):
# https://github.com/openai/gym/blob/0.23.0/gym/wrappers/time_limit.py
def __init__(self, env, max_episode_steps=None):
super().__init__(env)
if max_episode_steps is None and self.env.spec is not None:
max_episode_steps = env.spec.max_episode_steps
if self.env.spec is not None:
self.env.spec.max_episode_steps = max_episode_steps
self._max_episode_steps = max_episode_steps
self._elapsed_steps = None
def step(self, action):
observation, reward, done, info = self.env.step(action)
self._elapsed_steps += 1
if self._elapsed_steps >= self._max_episode_steps:
info["TimeLimit.truncated"] = not done
done = True
return observation, reward, done, info
def reset(self, **kwargs):
self._elapsed_steps = 0
return self.env.reset(**kwargs)
class SparseReward(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
def step(self, action):
obs, _, done, info = self.env.step(action)
reward = float(info["success"])
return obs, reward, done, info
class ActionRepeat(gym.Wrapper):
def __init__(self, env, action_repeat):
super().__init__(env)
self._action_repeat = action_repeat
def step(self, action):
total_reward = 0.0
for _ in range(self._action_repeat):
obs, reward, done, info = self.env.step(action)
total_reward += reward
if done:
break
return obs, total_reward, done, info
class NormalizeAction(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
# Only normalize bounded action dimensions
space = env.action_space
bounded = np.isfinite(space.low) & np.isfinite(space.high)
self._action_space = Box(
low=np.where(bounded, -1, space.low),
high=np.where(bounded, 1, space.high),
dtype=np.float32,
)
self._low = np.where(bounded, space.low, -1)
self._high = np.where(bounded, space.high, 1)
def step(self, action):
orig_action = (action + 1) / 2 * (self._high - self._low) + self._low
return self.env.step(orig_action)
class FrameStack(gym.Wrapper):
def __init__(self, env, num_stack=1):
super().__init__(env)
self.num_stack = num_stack
self.frames = deque(maxlen=self.num_stack)
assert len(env.observation_space.shape) == 3
width, height = env.observation_space.shape[1:]
self._observation_space = Box(
high=255,
low=0,
shape=(3 * self.num_stack, width, height),
dtype=np.uint8,
)
@property
def stacked_obs(self):
assert len(self.frames) == self.num_stack
return np.concatenate(self.frames, 0)
def reset(self, **kwargs):
obs = self.env.reset(**kwargs)
[self.frames.append(obs) for _ in range(self.num_stack)]
return self.stacked_obs
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.frames.append(obs)
return self.stacked_obs, reward, done, info
class MetaWorldWrapper(gym.Wrapper):
def __init__(self, env, pixel_obs=False):
# Clear settings to use Metaworld environments as standalone tasks
env.unwrapped._set_task_called = True
env.unwrapped.random_init = False
env.unwrapped.max_path_length = np.inf
super().__init__(env)
self._pixel_obs = pixel_obs
self._camera = "corner3"
self._resolution = 64
if pixel_obs:
img_shape = (3, self._resolution, self._resolution)
self._observation_space = Box(
low=0, high=255, shape=img_shape, dtype=np.uint8
)
def reset(self, **kwargs):
state_obs = self.env.reset(**kwargs)
if self._pixel_obs:
obs = self.render("rgb_array")
else:
obs = state_obs
return obs
def step(self, action):
state_obs, reward, done, info = self.env.step(action)
if self._pixel_obs:
obs = self.render("rgb_array")
info["state_obs"] = state_obs
else:
obs = state_obs
return obs, reward, done, info
def render(self, mode="rgb_array"):
if mode == "rgb_array":
image = self.env.sim.render(
camera_name=self._camera,
width=self._resolution,
height=self._resolution,
depth=False,
)
return image.transpose(2, 0, 1).copy()
else:
return self.env.render(mode)
class FrankaWrapper(gym.Wrapper):
def __init__(self, env, pixel_obs=False):
super().__init__(env)
self._pixel_obs = pixel_obs
if not pixel_obs:
state_obs = self.env._get_state()
self._observation_space = Box(
low=-np.inf,
high=np.inf,
shape=state_obs.shape,
dtype=np.float32,
)
def reset(self, **kwargs):
obs = self.env.reset(**kwargs)
if not self._pixel_obs:
obs = self.env._get_state()
return obs
def step(self, action):
obs, reward, done, info = self.env.step(action)
if not self._pixel_obs:
obs = info["state_obs"]
return obs, reward, done, info
class MazeWrapper(gym.Wrapper):
def __init__(self, env, pixel_obs, img_source, resource_files, total_frames):
super().__init__(env)
self._pixel_obs = pixel_obs
self._img_source = img_source
self._resolution = 64
if pixel_obs:
img_shape = (3, self._resolution, self._resolution)
self._observation_space = Box(
low=0, high=255, shape=img_shape, dtype=np.uint8
)
if img_source is not None:
img_shape = (self._resolution, self._resolution)
self._bg_source = make_img_source(
src_type=img_source,
img_shape=img_shape,
resource_files=resource_files,
total_frames=total_frames,
grayscale=True,
)
def reset(self, **kwargs):
state_obs = self.env.reset(**kwargs)
if self._pixel_obs:
obs = self._get_pixel_obs()
else:
obs = state_obs
return obs
def step(self, action):
state_obs, reward, done, info = self.env.step(action)
if self._pixel_obs:
obs = self._get_pixel_obs()
info["state_obs"] = state_obs
else:
obs = state_obs
return obs, reward, done, info
def render(self, mode="rgb_array"):
return self.env.render(mode, width=self._resolution)
def _get_pixel_obs(self):
obs = self.render("rgb_array")
if self._img_source is not None:
# Hardcoded mask for maze
mask = np.logical_and(
(obs[:, :, 2] > obs[:, :, 1]), (obs[:, :, 2] > obs[:, :, 0])
)
bg = self._bg_source.get_image()
obs[mask] = bg[mask]
obs = obs.transpose(2, 0, 1).copy()
return obs