-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
234 lines (197 loc) · 9.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import json
import time
import numpy as np
import torch
from torch.optim import Adam
import torch.nn.functional as F
from argparse import ArgumentParser
from tensorboardX import SummaryWriter
import utils
from utils import logger
from dataset import Dataset
from module import load_graph_encoder, load_relation_decoder
def main(params):
# Load data
dataset = Dataset(params['data_path'], params['test']['test_target'])
num_nodes = dataset.num_nodes
train_data = dataset.train
valid_data = dataset.valid
test_data = dataset.test
num_relations = dataset.num_relations
# validation and testing triplets
valid_data = torch.tensor(valid_data, dtype=torch.long)
test_data = torch.tensor(test_data, dtype=torch.long)
train_data_tensor = torch.tensor(train_data, dtype=torch.long)
# GPU settings
use_cuda = params['use_cuda'] and torch.cuda.is_available()
cpu_device = torch.device('cpu')
device1 = torch.device(params['graph_encoder']['device'])
device2 = torch.device(params['relation_decoder']['device'])
# Load module
embed = None
if params['load_embed']['do']:
embed = torch.from_numpy(
np.load(params['load_embed']['embed_path'])['embed'])
logger.info('Loaded pretrained embedding weight from {}'.format(
params['load_embed']['embed_path']))
graph_encoder = load_graph_encoder(params, dataset, embed)
relation_decoder = load_relation_decoder(params, dataset)
learning_rate = params['train']['lr']
weight_decay = params['train']['weight_decay']
optimizer = Adam(list(graph_encoder.parameters()) + list(relation_decoder.parameters()),
lr=learning_rate, weight_decay=weight_decay)
# If model exists, start training with it
model_state_file = params['model_path']
epoch = utils.load_model(
model_state_file, graph_encoder, relation_decoder)
if epoch:
logger.info('Restore model from: {}, '
'using best epoch: {}'.format(model_state_file,
epoch))
# build test graph
test_graph, test_rel, test_norm = utils.build_test_graph(
num_nodes, num_relations, train_data)
# test_deg = test_graph.in_degrees(
# range(test_graph.number_of_nodes())).float().view(-1, 1)
test_node_id = torch.arange(0, num_nodes, dtype=torch.long).view(-1, 1)
test_rel = torch.from_numpy(test_rel)
test_norm = utils.node_norm_to_edge_norm(
test_graph, torch.from_numpy(test_norm).view(-1, 1))
# build adj list and calculate degrees for sampling
adj_list, degrees = utils.get_adj_and_degrees(num_nodes, train_data)
# Training
if params['train']['do']:
logger.info('Start training...')
# Use tensorboard to record scalars
writer = SummaryWriter(params['train']['log_file'])
epoch = 0
best_mrr = 0
while True:
epoch += 1
# Prepare model
for model in [graph_encoder, relation_decoder]:
model.train()
optimizer.zero_grad()
# perform edge neighborhood sampling to generate training graph and data
batch_size = params['train']['train_batch_size']
split_size = params['train']['graph_split_size']
negative_sample = params['train']['negative_sample']
edge_sampler = params['train']['edge_sampler']
g, node_id, rel, node_norm, data, labels = \
utils.generate_sampled_graph_and_labels(
train_data, batch_size, split_size,
num_relations, adj_list, degrees, negative_sample,
edge_sampler)
logger.info('Done edge sampling')
# set node / edge feature
node_id = torch.from_numpy(node_id).view(-1, 1).long()
rel = torch.from_numpy(rel)
edge_norm = utils.node_norm_to_edge_norm(
g, torch.from_numpy(node_norm).view(-1, 1))
data, labels = torch.from_numpy(data), torch.from_numpy(labels)
# Forward pass
t0 = time.time()
emb_entity = graph_encoder(g, node_id, rel, edge_norm)
score = relation_decoder(emb_entity, data)
# Calculate loss on same device
if labels.device != score.device:
labels = labels.to(score.device)
loss = F.binary_cross_entropy_with_logits(score, labels)
regularization = params['train']['regularization']
loss += regularization * \
(torch.pow(emb_entity, 2).mean() +
relation_decoder.reglurization())
t1 = time.time()
# Record loss
writer.add_scalar('loss', loss.item(), epoch)
# clip gradients
loss.backward()
for model in [graph_encoder, relation_decoder]:
torch.nn.utils.clip_grad_norm_(
model.parameters(), params['train']['grad_norm'])
# Optimize
optimizer.step()
t2 = time.time()
forward_time = t1 - t0
backward_time = t2 - t1
logger.info('Epoch {:04d} | Loss {:.4f} | Best MRR {:.4f} | '
'Forward {:.4f}s | Backward {:.4f}s'.
format(epoch, loss.item(), best_mrr, forward_time, backward_time))
# validation
if epoch % params['train']['eval_every'] == 0:
# perform validation on CPU because full graph is too large
if use_cuda:
graph_encoder.set_device(cpu_device)
relation_decoder.set_device(cpu_device)
logger.info('start eval')
with torch.no_grad():
emb_entity = graph_encoder(
test_graph, test_node_id, test_rel, test_norm)
logger.info(
'graph encoded embedding of each node calculated')
res = utils.eval_filtered(emb_entity, relation_decoder,
train_data_tensor, valid_data, test_data,
hits=[1, 3, 10], eval_type='test')
mrr = res['all']['mrr']
# Record evaluation results
for rank_name, eval_result in res.items():
for k, v in eval_result.items():
writer.add_scalar(
'{}_{}'.format(rank_name, k), v, epoch)
# save best model
if mrr < best_mrr:
if epoch >= params['train']['n_epochs']:
break
else:
best_mrr = mrr
utils.save_model(model_state_file, graph_encoder,
relation_decoder, epoch)
# Recover device
graph_encoder.set_device(device1)
relation_decoder.set_device(device2)
logger.info('training done')
if params['test']['do']:
logger.info('start testing:')
# use best model checkpoint
epoch = utils.load_model(
model_state_file, graph_encoder, relation_decoder)
if epoch:
logger.info('Restore model from: {}, '
'using best epoch: {}'.format(model_state_file,
epoch))
# perform validation on CPU because full graph is too large
if use_cuda:
graph_encoder.set_device(cpu_device)
relation_decoder.set_device(cpu_device)
with torch.no_grad():
emb_entity = graph_encoder(
test_graph, test_node_id, test_rel, test_norm)
utils.eval_filtered(emb_entity, relation_decoder,
train_data_tensor, valid_data,
test_data, hits=[1, 3, 10],
eval_type='test', entity_filters=dataset.entity_filters)
logger.info('testing done')
if params['export_embed']['do']:
logger.info('exporting embedding from graph model...')
# use best model checkpoint
epoch = utils.load_model(
model_state_file, graph_encoder, relation_decoder)
if epoch:
logger.info('Restore model from: {}, '
'using best epoch: {}'.format(model_state_file,
epoch))
# Save embedding weights
save_file = params['export_embed']['embed_path']
emb_weights = graph_encoder.emb_node.weight.detach().cpu().numpy()
np.savez_compressed(save_file, embed=emb_weights)
logger.info('Saved embedding weights to ' + save_file)
if __name__ == '__main__':
parser = ArgumentParser('Link prediction framework')
parser.add_argument('-c', '--config', type=str, default='config/config.json',
help='path to configuration file containing a dict of parameters')
args = parser.parse_args()
# Load config file
with open(args.config, 'r') as f:
config = json.load(f)
main(config)