Code reproduction for the paper:
Analyzing RNA-Seq Gene Expression Data Using Deep Learning Approaches for Cancer Classification
Code Repdocution | Original | |||||
---|---|---|---|---|---|---|
Model | Precision | Recall | F1-Score | Accuracy | Model | Accuracy |
CNN | 0.8564 | 0.8872 | 0.8658 | 0.9183 | CNN | 0.9695 |
AlexNet | 0.877 | 0.9028 | 0.8824 | 0.9375 | AlexNet | 0.931 |
GoogleNet | 0.8982 | 0.8916 | 0.8897 | 0.9362 | GoogleNet | 0.9586 |
VGG16 | 0.9377 | 0.913 | 0.9219 | 0.9567 | VGG16 | 0.9287 |
VGG19 | 0.9541 | 0.9076 | 0.9061 | 0.9138 | VGG19 | 0.9109 |
ResNet50 | 0.9688 | 0.9466 | 0.9691 | 0.9295 | ResNet50 | 0.9671 |
ResNet101 | 0.899 | 0.9278 | 0.9055 | 0.9537 | ResNet101 | 0.9539 |
ResNet152 | 0.8485 | 0.8525 | 0.8502 | 0.9103 | ResNet152 | 0.9478 |
Add Grad CAM to visualize the RNA feature.