1) Environment requirements
- Python 3.x
- Pytorch 1.7 or higher
- CUDA 9.2 or higher
Create a conda virtual environment and activate it.
conda create -n Fsnet python=3.7
conda activate Fsnet
2) Clone the our project.
git clone https://github.com/Gary3410/shape_estimation.git
3) Install the dependencies.
pip install matplotlib
pip install numpy
pip install opencv-contrib-python
pip install opencv-python
4) Build CD_loss
cd Fsnet
cd chamer3D
python setup.py install
链接:https://pan.baidu.com/s/1MCUWcxA5r7wf1hJf5f330A?pwd=gwdo
创建路径
cd Fsnet
mkdir data
数据文件直接放在data文件下 文件目录如下:
Fsnet
├── data
│ ├── box
│ │ ├──1
│ │ │ ├──0_depth.png
│ │ │ ├──0_label.pkl
│ │ │ ├──0_rgb.png
│ │ │ ├──0_seg.png
│ │ ├──points
│ │ │ ├──pose0000001.txt
│ │ │ ...
│ │ ├──points_labs
│ │ │ ├──lab0000001.txt
│ │ ├──box.ply
│ ├── can
│ │ ├──can.ply
│ │ ...
│ ├── mug
│ │ ├──mug.ply
│ │ ...
box, can, mug都是物体形状大类
box.ply, mug.ply都是物体模板
pose00000001.txt为采集的点云块
lab00000001.txt为标签点云(目前为点云中各个点的标签, 用于区分前景与背景)
1中文件为尺度标签, 后续不会使用
CUDA_VISIBLE_DEVICES=0 python train_test_cp.py