-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_openai_wrapper_v2.py
418 lines (362 loc) · 16.2 KB
/
main_openai_wrapper_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import sys
import os
import uvicorn
from fastapi import FastAPI, HTTPException, Request, status, BackgroundTasks
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sse_starlette.sse import EventSourceResponse
from utils.env_utils import EnvKeys, EnvContext, app
from utils.logger_utils import get_logger
from utils.openai_utils import num_tokens_from_messages
logger = get_logger()
import json
from typing import List, Optional, Union
from dataclasses import dataclass
from typing import List, Dict
from enum import Enum
from controllers import user_controller
from common.protocol.openai_api_protocol import ChatCompletionStreamResponse, CompletionStreamResponse
from common.protocol.openai_api_protocol import OpenaiGeneratorPath
# *******************************************
@dataclass
class Context:
llm_model_type: str
model: any
tokenizer: any
embeddings_model: any
tokens: List[str]
from common.domains import UserTokens
# *******************************************
context = Context(None, [], None, None, UserTokens.keys())
def generate_response(message: Union[str,Dict]=None, path=OpenaiGeneratorPath.TEXT_CHAT_COMPLETION.value,
model = "gpt-3.5-turbo-0301",
object= "chat.completion"):
pass
def generate_stream_response_start():
return {
"id": "chatcmpl-77QWpn5cxFi9sVMw56DZReDiGKmcB",
"object": "chat.completion.chunk", "created": 1682004627,
"model": "gpt-3.5-turbo-0301",
"choices": [{"delta": {"role": "assistant"}, "index": 0, "finish_reason": None}]
}
def generate_stream_response(content: str):
return {
"id": "chatcmpl-77QWpn5cxFi9sVMw56DZReDiGKmcB",
"object": "chat.completion.chunk",
"created": 1682004627,
"model": "gpt-3.5-turbo-0301",
"choices": [{"delta": {"content": content}, "index": 0, "finish_reason": None}
]}
def generate_stream_response_stop():
return {"id": "chatcmpl-77QWpn5cxFi9sVMw56DZReDiGKmcB",
"object": "chat.completion.chunk", "created": 1682004627,
"model": "gpt-3.5-turbo-0301",
"choices": [{"delta": {}, "index": 0, "finish_reason": "stop"}]
}
class Message(BaseModel):
role: str
content: str
from common.domains import User, db, db_app
from common.dao import FsaDao
fsa_dao = FsaDao(db, db_app)
from typing import Dict, Any
import httpx
headers = {"User-Agent": "Portal API Server"}
from common.protocol.worker_api_protocol import SvcModelMapping, ModelSvcMapping
svc2model_mapping = SvcModelMapping(json.load(open("conf/svc2model.json", "r")))
model2svc_mapping = svc2model_mapping.reverse()
logger.debug(f"model2svc_mapping: {model2svc_mapping}")
from common.factory import get_svc_rd
svc_rd = get_svc_rd()
WORKER_API_TIMEOUT = 30
# ******************************************* generator ****
from common.protocol.worker_api_protocol import WorkerGeneratorPath
from common.domains import Dialog
def save_dialog_count(msg, payload, user: User):
"""count tokens
save content to db"""
# messages = payload["messages"]
# messages.append(msg)
# token_used = num_tokens_from_messages(messages=messages)
token_used = -1
dialog = Dialog(payload=payload, message=msg, user_id=user.id, model=payload["model"], token_used=token_used)
fsa_dao.save_obj(dialog)
logger.debug("saved dialog to db")
async def generate_completion_stream(payload: Dict[str, Any], worker_addr, user: User):
# worker_addr = svc_rd.get_svc(model2svc_mapping.get(payload["model"]))
try:
tokens = []
async with httpx.AsyncClient() as client:
# worker_addr = await _get_worker_address(payload["model"], client)
delimiter = b"\0"
async with client.stream(
"POST",
worker_addr + WorkerGeneratorPath.TEXT_COMPLETION_STREAM.value,
headers=headers,
json=payload,
timeout=WORKER_API_TIMEOUT,
) as response:
# content = await response.aread()
if response.status_code == 200:
async for raw_chunk in response.aiter_raw():
for chunk in raw_chunk.split(delimiter):
if not chunk:
continue
data = chunk.decode()
logger.debug(data)
resp = json.loads(data) # StreamCompletionRet
path = payload.get("path", None)
if path == OpenaiGeneratorPath.TEXT_COMPLETION.value:
text = resp["data"][0]["text"]
if text:
tokens.append(text)
# StreamCompletionRet --> CompletionStreamResponse
yield json.dumps(CompletionStreamResponse(choices=resp["data"],
model=payload["model"])
.dict(exclude_unset=True))
elif path is None or path == OpenaiGeneratorPath.TEXT_CHAT_COMPLETION.value:
delta = resp["data"][0]["delta"]
if "content" in delta:
tokens.append(delta["content"])
# StreamCompletionRet --> ChatCompletionStreamResponse
yield json.dumps(ChatCompletionStreamResponse(choices=resp["data"],
model=payload["model"],
).dict(exclude_unset=True))
else:
raise HTTPException(response.status_code, response.text)
# msg = {"content": "".join(tokens)}
# save_dialog_count(msg, payload, user) todo
except httpx.TimeoutException:
raise HTTPException(status.HTTP_504_GATEWAY_TIMEOUT, "Time out!")
except Exception as e:
# print(e)
logger.error(e.__repr__())
raise HTTPException(status.HTTP_500_INTERNAL_SERVER_ERROR, f"ERROR! detail: {e.__repr__()}")
# print("-----------------------")
# yield json.dumps(generate_stream_response(e.__repr__()), ensure_ascii=False)
# yield json.dumps(generate_stream_response_stop(), ensure_ascii=False)
async def generate_completion(payload: Dict[str, Any], worker_addr, user: User) -> str:
try:
async with httpx.AsyncClient() as client:
response = await client.post(
worker_addr + WorkerGeneratorPath.TEXT_COMPLETION.value,
headers=headers,
json=payload,
timeout=WORKER_API_TIMEOUT,
)
if response.status_code == 200:
completion = response.json()
logger.debug(completion) # CompletionRet
# save_dialog_count(completion, payload, user)
return completion
else:
raise HTTPException(response.status_code, response.text)
except httpx.TimeoutException:
raise HTTPException(status.HTTP_504_GATEWAY_TIMEOUT, "Time out!")
except Exception as e:
logger.error(e)
raise HTTPException(status.HTTP_500_INTERNAL_SERVER_ERROR, f"ERROR! detail: {e.__repr__()}")
async def generate_embedding(payload: Dict[str, Any], worker_addr, user: User):
try:
async with httpx.AsyncClient() as client:
response = await client.post(
worker_addr + WorkerGeneratorPath.TEXT_EMBEDDING.value,
headers=headers,
json=payload,
timeout=WORKER_API_TIMEOUT,
)
if response.status_code == 200:
resp = response.json()
logger.debug(resp) # EmbeddingRet: resp = {"data": {"embeddings": [[0.1, 0.2, 0.3]]}, ..., "code": 1}
# save_dialog_count(completion, payload, user)
return resp
else:
raise HTTPException(response.status_code, response.text)
except httpx.TimeoutException:
raise HTTPException(status.HTTP_504_GATEWAY_TIMEOUT, "Time out!")
except Exception as e:
# print(e)
logger.error(e.__repr__())
raise HTTPException(status.HTTP_500_INTERNAL_SERVER_ERROR, f"ERROR! detail: {e.__repr__()}")
# ************************************** endpoints **************************************
from common.protocol.openai_api_protocol import UsageInfo
from common.protocol.openai_api_protocol import EmbeddingsRequest, ChatCompletionRequest, CompletionRequest
from common.protocol.openai_api_protocol import CompletionResponse, EmbeddingsResponse, ChatCompletionResponse
class ChatBody(BaseModel):
messages: List[Message]
model: str
stream: Optional[bool] = False
max_tokens: Optional[int]
temperature: Optional[float]
top_p: Optional[float]
functions: Optional[List[Dict]]
function_call: Optional[str]
@app.post("/v1/chat/completions")
async def chat_completions(body: ChatCompletionRequest, request: Request, background_tasks: BackgroundTasks):
"""
https://platform.openai.com/docs/api-reference/chat
"""
auth_token = request.headers.get("Authorization").split(" ")[1]
# if auth_token not in context.tokens:
user = fsa_dao.query_by_key(token=auth_token)
if user is None:
raise HTTPException(status.HTTP_401_UNAUTHORIZED, "Token is wrong!")
# find user and limit by token
if user.token_limit - user.token_used < 0:
raise HTTPException(status.HTTP_402_PAYMENT_REQUIRED, "cash used up!")
# todo: check model
model = body.model
# if model not in context.model:
# raise HTTPException(status.HTTP_404_NOT_FOUND, "LLM model not found!")
# question = body.messages[-1]
# if question.role == 'user':
# question = question.content
# else:
# raise HTTPException(status.HTTP_400_BAD_REQUEST, "No Question Found")
# messages = []
# for message in body.messages:
# messages.append(message.__dict__)
# history = []
# user_question = ''
# for message in body.messages:
# if message.role == 'system':
# history.append((message.content, "OK"))
# if message.role == 'user':
# user_question = message.content
# elif message.role == 'assistant':
# assistant_answer = message.content
# history.append((user_question, assistant_answer))
# logger.debug(f"question = {question}, history = {history}")
# print(body)
logger.debug(body.dict())
payload = {}
payload.update(body.dict(exclude_defaults=True))
worker_addr = svc_rd.get_svc(model2svc_mapping.get(payload["model"]))
logger.debug(f"worker_addr = {worker_addr}")
if worker_addr is None:
raise HTTPException(status.HTTP_503_SERVICE_UNAVAILABLE, "current model is not available")
if body.stream:
generator = generate_completion_stream(payload=payload,
worker_addr=worker_addr,
user=user)
return EventSourceResponse(generator, ping=10000)
else:
# response = "hello"
response = await generate_completion(payload=payload,
worker_addr=worker_addr,
user=user)
logger.debug(f"response = {response}")
# CompletionRet --> ChatCompletionResponse
return JSONResponse(content=ChatCompletionResponse(
model=model,
choices=response["data"],
usage=UsageInfo(**response["usage_info"])
).dict())
class CompletionBody(BaseModel):
prompt: Union[str, List]
model: str
stream: Optional[bool] = False
max_tokens: Optional[int]
temperature: Optional[float]
top_p: Optional[int]
n: Optional[int] = 1
logprobs: Optional[int] = None
echo: Optional[bool] = False
frequency_penalty: Optional[int]
presence_penalty : Optional[int]
logit_bias: Optional[Dict] = None
stop: Optional[List]
@app.post("/v1/completions")
async def completions(body: CompletionBody, request: Request, background_tasks: BackgroundTasks):
"""
https://platform.openai.com/docs/api-reference/completions
"""
# receive_ = await request._receive()
# print(receive_)
# return {}
# background_tasks.add_task(torch_gc)
auth_token = request.headers.get("Authorization").split(" ")[1]
# if auth_token not in context.tokens:
user = fsa_dao.query_by_key(token=auth_token)
if user is None:
raise HTTPException(status.HTTP_401_UNAUTHORIZED, "Token is wrong!")
# find user and limit by token
# user = UserTokens.get(auth_token, None)
if user.token_limit - user.token_used < 0:
raise HTTPException(status.HTTP_402_PAYMENT_REQUIRED, "cash used up!")
# todo: check model
model = body.model
# if model not in context.model:
# raise HTTPException(status.HTTP_404_NOT_FOUND, "LLM model not found!")
payload = {"path": "/v1/completions"}
payload.update(body.dict(exclude_defaults=True))
worker_addr = svc_rd.get_svc(model2svc_mapping.get(payload["model"]))
if worker_addr is None:
raise HTTPException(status.HTTP_503_SERVICE_UNAVAILABLE, "current model is not available")
if body.stream:
generator = generate_completion_stream(payload=payload,
worker_addr=worker_addr,
user=user)
return EventSourceResponse(generator, ping=10000)
else:
response = await generate_completion(payload=payload,
worker_addr=worker_addr,
user=user)
logger.debug(f"response = {response}, {type(response)}")
# CompletionRet --> CompletionResponse
return JSONResponse(content=CompletionResponse(
model=model,
choices=response["data"], # dict
usage=UsageInfo(**response["usage_info"])
).dict())
@app.post("/v1/embeddings")
async def completions(body: EmbeddingsRequest, request: Request, background_tasks: BackgroundTasks):
"""
https://platform.openai.com/docs/api-reference/embeddings
"""
auth_token = request.headers.get("Authorization").split(" ")[1]
# if auth_token not in context.tokens:
user = fsa_dao.query_by_key(token=auth_token)
if user is None:
raise HTTPException(status.HTTP_401_UNAUTHORIZED, "Token is wrong!")
# find user and limit by token
# user = UserTokens.get(auth_token, None)
if user.token_limit - user.token_used < 0:
raise HTTPException(status.HTTP_402_PAYMENT_REQUIRED, "cash used up!")
# todo: check model
model = body.model
# if model not in context.model:
# raise HTTPException(status.HTTP_404_NOT_FOUND, "LLM model not found!")
payload = {"path": "/v1/embeddings"}
payload.update(body.dict(exclude_defaults=True))
worker_addr = svc_rd.get_svc(model2svc_mapping.get(payload["model"]))
if worker_addr is None:
raise HTTPException(status.HTTP_503_SERVICE_UNAVAILABLE, "current model is not available")
response = await generate_embedding(payload=payload,
worker_addr=worker_addr,
user=user)
logger.debug(f"response = {response}, {type(response)}")
return JSONResponse(content=EmbeddingsResponse(
model=model,
data=response["data"],
usage=UsageInfo(**response["usage_info"])
).dict())
# *******************************************************************************
import sys
def usage():
"""
print usage message and exit.
"""
print('Usage: {} svc-host svc-port svc-name(optional)'.format(sys.argv[0]))
sys.exit(1)
if __name__ == '__main__':
if len(sys.argv) < 3:
usage()
svc_port = int(sys.argv[2])
host=sys.argv[1]
if len(sys.argv) == 4:
name = sys.argv[3]
else:
name = "OpenAI-compatible-API-server"
svc_rd.register_svc(name, f"{name}-{host}-{svc_port}", host, svc_port)
uvicorn.run(app, host="0.0.0.0", port=svc_port)