Implementation for ICLR 2023 paper:
Logical Message Passing Networks with One-hop Inference on Atomic Formula
see the arXiv version and the OpenReview version.
In this documentation, we detail how to reproduce the results in the paper based on existing checkpoints released by other researchers.
- Logical Message Passing Networks with One-hop Inference on Atomic Formula
- Requirement of this repository
- Version
- Preparation
- Train LMPNN
- Answering Existential First Order (EFO) queries
- Summarize the results from log files
- Citing this paper
- pytorch
- jupyter
- tqdm
Requirement of other submodules will be discussed accordingly.
My conda environment could be found at ENV1.yaml
- Update 2023/07/20. We fix the non-freezed KG embedding issue before the commit id e83a95a. New version fixes the KG embedding and is now fully consistent as the paper.
** This repo is under construction for usability. The key results for the paper can already be reproduced. **
Todo features:
- Implement CQD CO Extended, CQD(E) in the paper
- Introduce several ways to train KGE checkpoints with released repositories, which can be backbones for LMPNN.
Please download the dataset from snap-stanford/KGReasoning.
Specifically, one can run:
mkdir data
cd data
wget http://snap.stanford.edu/betae/KG_data.zip # a zip file of 1.3G
unzip KG_data.zip
Then the data
folder will contain the following folders and files:
FB15k-237-betae
FB15k-237-q2b
FB15k-betae
FB15k-q2b
KG_data.zip
NELL-betae
NELL-q2b
We rearange them into different subfolders:
mkdir betae-dataset
mv *betae betae-dataset
mkdir q2b-dataset
mv *q2b q2b-dataset
Finally, run convert_beta_dataset.py
to convert the data into the graph forms for LMPNN. One can find the new dataset folders in ./data
.
An example converted dataset format is
data/FB15k-237-betae
- kgindex.json
- train_kg.tsv
- valid_kg.tsv
- test_kg.tsv
- train-qaa.json
- valid-qaa.json
- test-qaa.json
where
kgindex.json
file stores the relation/entity names and their ids,{train/valid/test}_kg.tsv
stores the triples in three knowledge graphs (triples intrain_kg.tsv
is the subset of those invalid_kg.tsv
, and triplesvalid_kg.tsv
is also the subset of those intest_kg.tsv
){train/valid/test}-qaa.json
stores the Query, easy Answers and hard Answers for train, valid, and test set.
We consider two different repositories to pretrain the KGE checkpoints. Including
To initialize these modules, please run
git submodule update
How to train the checkpoints with these submodules is discussed in this section.
Generally, there are two steps, once the KG is prepared:
- Convert the KG triples into the format that can be used in each submodule.
- Train the checkpoints.
Choice 1: Pretrain with uma-pi1/kge
To run libkge
submodule, one need editable installation.
cd kge
pip install -e .
Running the following code to convert BetaE dataset into ./kge/data
.
python convert_kg_data_for_kge.py
We provide a config in config/kge/fb15k-237-complex.yaml
. Tailor the config to train checkpoints with libkge
.
kge start config/kge/fb15k-237-complex.yaml --job.device cuda:0
The obtained checkpoints can be found at kge/local
.
Choice 2: Pretrain with facebookresearch/ssl-relation-prediction
pip install ogb networkx wandb
Running the following code to convert BetaE dataset into ./ssl-relation-prediction/data
.
python convert_kg_data_for_ssl.py
Notably, in the ssl-relation-prediction/src/main.py
file, the command arg parser prohibits external sources of datasets in line 47-50.
parser.add_argument(
'--dataset', choices=datasets,
help="Dataset in {}".format(datasets)
)
Let's change it into
parser.add_argument(
'--dataset'
)
The training process can be initialized by running
cd ssl-relation-prediction
python src/main.py --dataset FB15k-237-betae \
--score_rel True \
--model ComplEx \
--rank 1000 \
--learning_rate 0.1 \
--batch_size 1000 \
--lmbda 0.05 \
--w_rel 4 \
--max_epochs 100 \
--model_cache_path ./ckpts/FB15k-237-complex/
The obtained checkpoints can be found at ssl-relation-prediction/ckpts/FB15k-237-complex
.
We convert external KGE checkpoints into the format that can be loaded by LMPNN. We consider three sources of external checkpoints
- Checkpoints released by uclnlp/cqd.
- Checkpoints released / pretrained by uma-pi1/kge
- Checkpoints released by facebookresearch/ssl-relation-prediction
The pretrained checkpoints are managed in the folder pretrain
.
mkdir pretrain
Sources 1. uclnlp/cqd
This source of checkpoints is used to repreduced the results shown in the paper.
cd pretrain
wget http://data.neuralnoise.com/cqd-models.tgz # a .tgz file of 4.8G
tar xvf cqd-models.tgz
mv models raw_cqd_pretrain_models
Then we can convert the checkpoints into the format used in this repo.
python convert_cqd_pretrain_ckpts.py
Sample usage at FB15k-237
python3 train_lmpnn.py \
--task_folder data/FB15k-237-betae \
--output_dir log/FB15k-237/lmpnn-complex1k-default \
--checkpoint_path pretrain/cqd/FB15k-237-model-rank-1000-epoch-100-1602508358.pt \
--embedding_dim 1000 \
--device cuda:0
Sample usage at FB15k
python3 train_lmpnn.py \
--task_folder data/FB15k-betae \
--checkpoint_path pretrain/cqd/FB15k-model-rank-1000-epoch-100-1602520745.pt \
--device cuda:1 \
--hidden_dim 8192 \
--output_dir log/FB15k/lmpnn-complex1k-default
Sample usage at NELL
python3 train_lmpnn.py \
--task_folder data/NELL-betae \
--checkpoint_path pretrain/cqd/NELL-model-rank-1000-epoch-100-1602499096.pt \
--device cuda:2 \
--hidden_dim 8192 \
--temp 0.1 \
--batch_size 512 \
--batch_size_eval_dataloader 8 \
--batch_size_eval_truth_value 1 \
--output_dir log/NELL/lmpnn-complex1k-default
In this repository, the capability of answering EFO-1 queries is implemented by the reasoner
s.
- CQD-CO is implemented as
GradientEFOReasoner
, which is refered as CQD(E) in the paper. - LMPNN is implemented as
GNNEFOReasoner
withLogicalGNNLayer
python train_lmpnn.py \
--reasoner gradient \
--device cuda:1 \
--checkpoint_path pretrain/cqd/FB15k-237-model-rank-1000-epoch-100-1602508358.pt
We use script read_eval_from_log.py
to summarize the results from the log file.
For example, the results on FB15k-237 in file log/FB15k-237/pretrain_complex1000-default/output.log
can be summarized by the following piece of code.
python3 read_eval_from_log.py --log_file log/FB15k-237/pretrain_complex1000-default/output.log
Then the code will output the markdown table of the trajectory over valid and test set.
For FB15k-237, a possible output trajectory could be like
Validation Set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 43.1522 | 8.96845 | 7.30686 | 28.5481 | 42.3203 | 12.6179 | 10.7356 | 10.8988 | 7.9376 | 5.15343 | 9.14102 | 6.64968 | 3.48541 | 3.33012 | 19.1651 | 5.55193 |
(10, 'mrr') | 43.1469 | 9.72417 | 7.70923 | 29.5263 | 44.0089 | 14.4818 | 12.1041 | 11.0914 | 8.02962 | 5.83145 | 9.66503 | 7.01406 | 3.67668 | 3.64304 | 19.9803 | 5.96605 |
(15, 'mrr') | 43.8283 | 9.78142 | 7.81307 | 29.8871 | 44.3047 | 15.0133 | 12.4008 | 11.139 | 8.22536 | 5.83979 | 9.86778 | 7.0962 | 3.70381 | 3.79685 | 20.2659 | 6.06089 |
(20, 'mrr') | 43.8607 | 10.5252 | 8.27492 | 30.7076 | 45.3577 | 16.3521 | 13.0123 | 11.2875 | 8.52308 | 6.13657 | 10.185 | 7.29428 | 3.74871 | 3.91729 | 20.8779 | 6.25637 |
(25, 'mrr') | 44.0598 | 10.411 | 8.37461 | 30.2869 | 45.1289 | 16.2044 | 12.8736 | 11.2198 | 8.30653 | 6.02084 | 9.82021 | 7.21201 | 3.9356 | 4.02344 | 20.7628 | 6.20242 |
(30, 'mrr') | 43.8415 | 10.4777 | 8.47792 | 30.7736 | 45.5773 | 16.8041 | 13.0142 | 11.0647 | 8.35672 | 6.05398 | 10.335 | 7.39058 | 3.73573 | 3.95478 | 20.932 | 6.29401 |
(35, 'mrr') | 44.0388 | 10.4904 | 8.66033 | 30.8991 | 45.9508 | 17.6397 | 13.2279 | 11.2514 | 8.44008 | 6.16027 | 10.3354 | 7.46953 | 3.80763 | 3.92426 | 21.1776 | 6.33942 |
(40, 'mrr') | 43.7431 | 10.7154 | 8.9294 | 30.9381 | 46.091 | 17.4797 | 13.3665 | 11.1077 | 8.54201 | 6.10274 | 10.445 | 7.4784 | 3.8803 | 4.01805 | 21.2125 | 6.38489 |
(45, 'mrr') | 44.0037 | 10.8814 | 8.71511 | 31.0536 | 46.4162 | 17.7432 | 13.4061 | 11.2816 | 8.40346 | 6.2916 | 10.5165 | 7.46814 | 3.88711 | 3.94484 | 21.3227 | 6.42164 |
(50, 'mrr') | 44.1079 | 10.8688 | 8.62299 | 31.3121 | 46.5769 | 17.9518 | 13.4356 | 11.3143 | 8.59079 | 6.23409 | 10.398 | 7.76916 | 3.77844 | 3.99303 | 21.4201 | 6.43454 |
(55, 'mrr') | 44.2142 | 11.2075 | 9.15606 | 31.7812 | 47.2926 | 19.3201 | 13.9342 | 11.3463 | 8.5981 | 6.29677 | 10.6873 | 7.93258 | 4.02479 | 4.05711 | 21.8722 | 6.59971 |
(60, 'mrr') | 44.1963 | 11.2091 | 9.26216 | 31.7813 | 47.5042 | 19.5144 | 13.9952 | 11.271 | 8.60634 | 6.35608 | 10.7975 | 7.85765 | 4.06059 | 4.00284 | 21.9267 | 6.61492 |
(65, 'mrr') | 44.1878 | 11.2833 | 9.23951 | 31.784 | 47.5272 | 19.8171 | 14.0538 | 11.2238 | 8.56164 | 6.31577 | 10.7261 | 7.89386 | 4.12592 | 3.97752 | 21.9642 | 6.60783 |
(70, 'mrr') | 44.1557 | 11.3497 | 9.26543 | 31.8273 | 47.6473 | 19.8378 | 14.0356 | 11.1839 | 8.57884 | 6.28838 | 10.7356 | 7.88885 | 4.12011 | 4.00915 | 21.9868 | 6.60841 |
(75, 'mrr') | 44.1301 | 11.3565 | 9.37637 | 31.8551 | 47.6066 | 19.965 | 14.0906 | 11.1939 | 8.55513 | 6.30744 | 10.7699 | 7.76835 | 4.11392 | 3.93539 | 22.0144 | 6.57901 |
(80, 'mrr') | 44.1289 | 11.3645 | 9.34517 | 31.865 | 47.8433 | 20.0669 | 14.1551 | 11.2427 | 8.65353 | 6.30529 | 10.7471 | 7.92971 | 4.12401 | 3.95507 | 22.0739 | 6.61224 |
(85, 'mrr') | 44.1127 | 11.4596 | 9.25204 | 31.7441 | 47.8254 | 19.9052 | 14.126 | 11.1764 | 8.62984 | 6.32005 | 10.7557 | 7.89449 | 4.16561 | 3.90074 | 22.0257 | 6.60732 |
(90, 'mrr') | 44.1258 | 11.3737 | 9.32294 | 31.9144 | 47.8743 | 20.0821 | 14.1917 | 11.2108 | 8.62529 | 6.34314 | 10.7944 | 7.92542 | 4.1587 | 3.94927 | 22.0801 | 6.63419 |
(95, 'mrr') | 44.1069 | 11.4469 | 9.35151 | 32.0017 | 47.8526 | 20.354 | 14.2962 | 11.1435 | 8.56965 | 6.39189 | 10.7905 | 7.83577 | 4.21076 | 3.96381 | 22.1248 | 6.63854 |
(100, 'mrr') | 44.1638 | 11.41 | 9.49996 | 31.8933 | 47.9468 | 20.2255 | 14.3075 | 11.1681 | 8.64452 | 6.34371 | 10.73 | 7.96422 | 4.20087 | 3.91509 | 22.1399 | 6.63077 |
Test set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 44.8991 | 10.3212 | 8.21212 | 31.3772 | 43.8674 | 14.1751 | 13.3347 | 13.6166 | 9.15165 | 7.003 | 10.8464 | 6.3307 | 3.73892 | 4.149 | 20.995 | 6.41361 |
(10, 'mrr') | 44.7485 | 11.0422 | 9.01639 | 32.5366 | 45.5268 | 16.815 | 14.8415 | 13.68 | 9.72893 | 7.78859 | 11.6098 | 6.77476 | 4.03303 | 4.59245 | 21.9929 | 6.95973 |
(15, 'mrr') | 45.4805 | 11.4756 | 9.00117 | 32.716 | 46.0811 | 17.2183 | 15.2297 | 13.7089 | 9.82214 | 8.14234 | 11.7426 | 6.82549 | 3.95403 | 4.8102 | 22.3037 | 7.09494 |
(20, 'mrr') | 45.5168 | 11.8394 | 9.10475 | 33.2281 | 46.7741 | 18.0997 | 15.6644 | 13.8107 | 10.1112 | 8.58388 | 12.3831 | 6.96503 | 4.17977 | 4.99503 | 22.6832 | 7.42136 |
(25, 'mrr') | 45.6835 | 11.8071 | 9.46537 | 33.4615 | 46.7437 | 18.3839 | 15.7297 | 13.6642 | 10.0942 | 8.47826 | 12.0139 | 7.21188 | 4.31563 | 4.96695 | 22.7815 | 7.39732 |
(30, 'mrr') | 45.5894 | 11.8349 | 9.42184 | 33.2727 | 47.1798 | 19.1685 | 16.0285 | 13.5988 | 10.0361 | 8.26477 | 12.2796 | 7.02654 | 4.05282 | 5.24071 | 22.9034 | 7.37289 |
(35, 'mrr') | 45.6687 | 12.2878 | 9.57961 | 33.8039 | 47.5376 | 19.7294 | 16.4946 | 13.7893 | 9.99798 | 8.55637 | 12.4467 | 7.06137 | 4.13864 | 5.08787 | 23.2099 | 7.45819 |
(40, 'mrr') | 45.401 | 12.1917 | 9.29751 | 33.5219 | 47.5335 | 19.7207 | 16.4359 | 13.6639 | 10.03 | 8.39218 | 12.417 | 7.24734 | 4.20833 | 5.00166 | 23.0885 | 7.45331 |
(45, 'mrr') | 45.8186 | 12.365 | 9.92397 | 34.0337 | 47.9003 | 20.0247 | 16.6008 | 13.6968 | 9.96648 | 8.62486 | 12.8463 | 7.27353 | 4.38398 | 5.05679 | 23.37 | 7.63709 |
(50, 'mrr') | 45.633 | 12.3816 | 10.1212 | 33.9538 | 48.0138 | 20.1938 | 16.5077 | 13.6692 | 10.2213 | 8.70553 | 12.7164 | 7.41705 | 4.48108 | 4.98651 | 23.4106 | 7.6613 |
(55, 'mrr') | 45.8942 | 12.7871 | 10.2142 | 34.3762 | 48.621 | 21.5511 | 17.0483 | 13.6615 | 10.2328 | 8.79375 | 12.9544 | 7.61405 | 4.55091 | 5.12093 | 23.8207 | 7.80681 |
(60, 'mrr') | 45.8769 | 13.0076 | 10.3082 | 34.548 | 48.4693 | 21.8219 | 17.2902 | 13.6215 | 10.2962 | 8.82371 | 13.0351 | 7.62129 | 4.6169 | 5.07511 | 23.9156 | 7.83441 |
(65, 'mrr') | 45.8871 | 12.8002 | 10.2563 | 34.5614 | 48.7442 | 22.0247 | 17.1587 | 13.7247 | 10.1597 | 8.81356 | 13.0102 | 7.63786 | 4.55925 | 5.04153 | 23.9241 | 7.81248 |
(70, 'mrr') | 45.915 | 12.9762 | 10.3503 | 34.6932 | 48.8386 | 21.9847 | 17.2467 | 13.6548 | 10.1373 | 8.75037 | 13.1279 | 7.60491 | 4.55571 | 5.04706 | 23.9774 | 7.8172 |
(75, 'mrr') | 45.9074 | 12.9137 | 10.2342 | 34.7737 | 48.7164 | 22.0299 | 17.3165 | 13.663 | 10.1987 | 8.74679 | 13.062 | 7.66346 | 4.63074 | 5.10834 | 23.9726 | 7.84227 |
(80, 'mrr') | 45.9094 | 12.9309 | 10.376 | 34.7534 | 48.8564 | 22.3067 | 17.2492 | 13.6232 | 10.1518 | 8.752 | 13.0546 | 7.64423 | 4.68432 | 5.12836 | 24.0174 | 7.85271 |
(85, 'mrr') | 45.8954 | 12.9381 | 10.273 | 34.7352 | 48.873 | 22.3331 | 17.2259 | 13.5965 | 10.1396 | 8.73849 | 13.0252 | 7.67358 | 4.59914 | 5.08056 | 24.0011 | 7.8234 |
(90, 'mrr') | 45.84 | 12.8973 | 10.3091 | 34.8627 | 49.0908 | 22.4607 | 17.3106 | 13.5644 | 10.1515 | 8.77689 | 13.1038 | 7.59491 | 4.66412 | 5.04967 | 24.0541 | 7.83788 |
(95, 'mrr') | 45.8448 | 12.8836 | 10.3528 | 34.8965 | 49.0815 | 22.5072 | 17.3211 | 13.4828 | 10.119 | 8.78041 | 13.0549 | 7.62073 | 4.70466 | 5.098 | 24.0544 | 7.85175 |
(100, 'mrr') | 45.8614 | 13.0062 | 10.4779 | 34.9732 | 49.0683 | 22.5373 | 17.3939 | 13.578 | 10.2351 | 8.69003 | 13.0802 | 7.68441 | 4.70692 | 5.01153 | 24.1257 | 7.83462 |
For FB15k dataset, a possible training trajectory could be
Validation set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 72.764 | 18.1599 | 14.3685 | 50.1483 | 63.4033 | 20.3927 | 21.7411 | 24.0656 | 17.3729 | 16.0573 | 14.3387 | 8.96579 | 5.63852 | 8.01369 | 33.6018 | 10.6028 |
(10, 'mrr') | 73.2114 | 20.7276 | 16.2229 | 50.9103 | 64.7822 | 24.5783 | 24.0674 | 24.2767 | 18.4504 | 16.0651 | 14.6001 | 9.98227 | 6.18293 | 9.6944 | 35.2475 | 11.305 |
(15, 'mrr') | 74.041 | 21.7555 | 16.8663 | 51.4346 | 65.7271 | 26.7591 | 25.3408 | 24.7065 | 18.9669 | 16.5432 | 14.7984 | 10.4507 | 6.67602 | 10.1124 | 36.1775 | 11.7161 |
(20, 'mrr') | 74.4192 | 22.4445 | 17.3096 | 51.8621 | 66.3508 | 28.1335 | 26.2893 | 25.1039 | 19.3605 | 17.0578 | 15.3382 | 10.7319 | 6.7229 | 10.4774 | 36.8081 | 12.0657 |
(25, 'mrr') | 74.6472 | 23.0718 | 17.8927 | 52.3799 | 66.7333 | 29.4432 | 27.0306 | 25.102 | 19.7324 | 17.0759 | 15.3593 | 11.0009 | 7.12063 | 10.7602 | 37.337 | 12.2634 |
(30, 'mrr') | 74.6737 | 23.4607 | 17.8685 | 52.2627 | 66.8866 | 30.3678 | 27.282 | 25.3029 | 19.5946 | 17.0104 | 15.299 | 11.007 | 7.04523 | 10.8055 | 37.5222 | 12.2334 |
(35, 'mrr') | 74.9351 | 23.8835 | 18.3777 | 52.3996 | 67.0009 | 30.8495 | 27.6875 | 25.4789 | 20.0324 | 16.8463 | 15.297 | 11.1668 | 7.17088 | 10.9909 | 37.8495 | 12.2944 |
(40, 'mrr') | 75.1099 | 24.4404 | 18.5153 | 52.6634 | 67.2669 | 31.201 | 28.1146 | 25.4405 | 20.0116 | 17.1899 | 15.7448 | 11.5347 | 7.43448 | 11.1738 | 38.0848 | 12.6155 |
(45, 'mrr') | 75.175 | 24.4533 | 18.7198 | 52.7764 | 67.4387 | 32.2673 | 28.5103 | 25.4906 | 20.0293 | 17.2964 | 15.8747 | 11.5726 | 7.28784 | 11.2956 | 38.3179 | 12.6654 |
(50, 'mrr') | 75.2242 | 24.5531 | 18.645 | 53.0605 | 67.4554 | 32.5306 | 28.4636 | 25.503 | 20.0741 | 17.2653 | 15.9408 | 11.5878 | 7.41323 | 11.3201 | 38.3899 | 12.7055 |
(55, 'mrr') | 75.7348 | 25.3315 | 19.4048 | 53.5306 | 68.1116 | 34.0854 | 29.3051 | 25.6027 | 20.3288 | 17.5561 | 16.1879 | 11.9783 | 7.51217 | 11.4066 | 39.0484 | 12.9282 |
(60, 'mrr') | 75.861 | 25.5841 | 19.5346 | 53.7438 | 68.2576 | 34.5876 | 29.5732 | 25.6164 | 20.4787 | 17.6198 | 16.3073 | 12.0556 | 7.65011 | 11.4113 | 39.2486 | 13.0088 |
(65, 'mrr') | 75.9349 | 25.7382 | 19.6538 | 53.6697 | 68.3454 | 34.8048 | 29.6301 | 25.6537 | 20.4627 | 17.6294 | 16.3302 | 12.139 | 7.6883 | 11.4152 | 39.3215 | 13.0404 |
(70, 'mrr') | 75.9818 | 25.7803 | 19.7334 | 53.8455 | 68.6032 | 35.0239 | 29.7125 | 25.6243 | 20.5497 | 17.6473 | 16.4369 | 12.1637 | 7.76578 | 11.4374 | 39.4283 | 13.0902 |
(75, 'mrr') | 76.0647 | 25.8406 | 19.8401 | 53.9193 | 68.5568 | 35.2081 | 29.7754 | 25.6366 | 20.5592 | 17.6685 | 16.3975 | 12.1659 | 7.8314 | 11.3745 | 39.489 | 13.0875 |
(80, 'mrr') | 76.0764 | 25.815 | 19.8477 | 53.8205 | 68.5533 | 35.353 | 29.7676 | 25.6507 | 20.5044 | 17.6077 | 16.4779 | 12.226 | 7.8704 | 11.3885 | 39.4876 | 13.1141 |
(85, 'mrr') | 76.1621 | 25.8629 | 19.9085 | 53.8178 | 68.594 | 35.352 | 29.8925 | 25.6998 | 20.6121 | 17.5867 | 16.5415 | 12.2125 | 7.92277 | 11.3823 | 39.5446 | 13.1292 |
(90, 'mrr') | 76.1505 | 25.8591 | 19.941 | 53.8449 | 68.7232 | 35.3287 | 30.0221 | 25.7584 | 20.5822 | 17.6385 | 16.4569 | 12.2411 | 7.92856 | 11.4002 | 39.5789 | 13.1331 |
(95, 'mrr') | 76.1381 | 25.9548 | 19.9634 | 53.8797 | 68.7455 | 35.6256 | 29.9943 | 25.7073 | 20.6724 | 17.622 | 16.6394 | 12.2738 | 7.97295 | 11.4501 | 39.6312 | 13.1916 |
(100, 'mrr') | 76.2425 | 25.9843 | 20.0225 | 53.9112 | 68.7771 | 35.6986 | 30.0373 | 25.8397 | 20.8087 | 17.6471 | 16.7057 | 12.2231 | 7.98628 | 11.414 | 39.7024 | 13.1952 |
|Test set| 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 80.0214 | 26.1631 | 20.6792 | 63.1397 | 70.4824 | 26.7026 | 31.8146 | 35.0759 | 25.2013 | 26.7359 | 26.8873 | 10.0949 | 6.86781 | 11.2488 | 42.1422 | 16.3669 |
(10, 'mrr') | 80.6118 | 29.9317 | 23.0558 | 64.1709 | 71.9207 | 32.2211 | 35.1749 | 34.2256 | 27.085 | 26.0799 | 27.0576 | 11.7576 | 7.76882 | 13.5857 | 44.2664 | 17.2499 |
(15, 'mrr') | 81.6128 | 32.087 | 24.2246 | 64.7785 | 72.8758 | 35.1365 | 36.9434 | 35.6952 | 28.4065 | 27.7164 | 27.5466 | 12.3355 | 8.14011 | 14.713 | 45.7512 | 18.0903 |
(20, 'mrr') | 82.1223 | 32.9022 | 24.7883 | 65.2956 | 73.2986 | 36.3822 | 37.6886 | 36.0638 | 28.7675 | 29.0385 | 27.9598 | 12.9415 | 8.56375 | 15.3342 | 46.3677 | 18.7676 |
(25, 'mrr') | 82.4252 | 34.2613 | 25.7724 | 65.5153 | 73.8097 | 38.1548 | 38.6816 | 36.4394 | 29.2493 | 28.9039 | 28.0133 | 13.1606 | 8.90367 | 15.7501 | 47.1454 | 18.9463 |
(30, 'mrr') | 82.6365 | 34.6101 | 25.5823 | 65.5032 | 74.0651 | 38.9272 | 39.0842 | 36.2058 | 29.4809 | 28.8655 | 28.0349 | 13.4159 | 8.92127 | 15.4652 | 47.3439 | 18.9406 |
(35, 'mrr') | 82.8815 | 35.4994 | 26.4092 | 65.9638 | 74.3764 | 40.0052 | 39.5615 | 36.8258 | 29.8588 | 28.8328 | 27.9218 | 13.6509 | 9.0599 | 15.8999 | 47.9313 | 19.0731 |
(40, 'mrr') | 83.0528 | 35.6612 | 26.4634 | 66.229 | 74.5047 | 40.617 | 39.6554 | 36.4271 | 29.9298 | 28.8021 | 28.2275 | 13.9195 | 9.4794 | 16.4576 | 48.06 | 19.3772 |
(45, 'mrr') | 83.136 | 36.7407 | 26.5522 | 66.3764 | 74.7943 | 42.0012 | 41.0161 | 36.5704 | 30.1945 | 29.4151 | 28.6116 | 13.789 | 9.48379 | 16.541 | 48.598 | 19.5681 |
(50, 'mrr') | 83.3121 | 36.643 | 26.7993 | 66.705 | 74.9823 | 42.057 | 40.0862 | 36.6947 | 30.2306 | 28.8638 | 28.5118 | 13.9804 | 9.23777 | 16.38 | 48.6122 | 19.3948 |
(55, 'mrr') | 84.0474 | 38.0631 | 28.1092 | 67.6499 | 76.0039 | 44.2674 | 41.6678 | 36.5543 | 30.9187 | 29.0836 | 29.0125 | 14.499 | 9.72798 | 16.6574 | 49.698 | 19.7961 |
(60, 'mrr') | 84.2658 | 38.3675 | 28.4186 | 67.8149 | 76.2868 | 44.6406 | 41.99 | 36.5638 | 31.2279 | 29.1775 | 29.1025 | 14.6062 | 9.85346 | 16.714 | 49.9529 | 19.8907 |
(65, 'mrr') | 84.3822 | 38.5743 | 28.5948 | 67.9548 | 76.3456 | 44.9868 | 42.1976 | 36.7303 | 31.1506 | 29.1546 | 29.2271 | 14.7821 | 9.87208 | 16.7348 | 50.1019 | 19.9541 |
(70, 'mrr') | 84.4594 | 38.726 | 28.5233 | 67.9601 | 76.3959 | 45.4252 | 42.4645 | 36.632 | 31.2578 | 29.2664 | 29.2771 | 14.7912 | 9.95378 | 16.6008 | 50.2049 | 19.9779 |
(75, 'mrr') | 84.5264 | 38.7699 | 28.6037 | 68.0511 | 76.5039 | 45.4822 | 42.545 | 36.7839 | 31.2311 | 29.1764 | 29.2714 | 14.7585 | 9.94432 | 16.6274 | 50.2775 | 19.9556 |
(80, 'mrr') | 84.6096 | 38.6981 | 28.5022 | 68.0766 | 76.4818 | 45.5297 | 42.3989 | 36.7637 | 31.2135 | 29.102 | 29.3295 | 14.8571 | 9.99067 | 16.6122 | 50.2527 | 19.9783 |
(85, 'mrr') | 84.6776 | 38.6621 | 28.4035 | 68.0234 | 76.4476 | 45.7052 | 42.4011 | 36.6235 | 31.1659 | 29.134 | 29.289 | 14.8435 | 9.99 | 16.5764 | 50.2344 | 19.9666 |
(90, 'mrr') | 84.7225 | 38.9814 | 28.4973 | 68.0495 | 76.5384 | 45.9682 | 42.7049 | 36.6288 | 31.2611 | 29.2248 | 29.3559 | 14.8518 | 9.99594 | 16.5391 | 50.3725 | 19.9935 |
(95, 'mrr') | 84.7482 | 39.0329 | 28.4649 | 68.1035 | 76.3899 | 46.021 | 42.7329 | 36.7371 | 31.1983 | 29.1817 | 29.2837 | 14.8702 | 10.0342 | 16.5788 | 50.381 | 19.9897 |
(100, 'mrr') | 84.8463 | 39.3027 | 28.729 | 68.1155 | 76.6316 | 46.1163 | 42.9275 | 36.8473 | 31.4271 | 29.1328 | 29.2369 | 14.852 | 10.0518 | 16.6147 | 50.5493 | 19.9776 |
For NELL dataset, a possible training trajectory could be
Validation set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 51.9866 | 16.4089 | 13.3687 | 31.5865 | 43.7179 | 18.1878 | 19.2869 | 14.4951 | 11.9546 | 3.18955 | 9.70108 | 10.7595 | 3.79393 | 4.22667 | 24.5548 | 6.33414 |
(10, 'mrr') | 58.0504 | 18.9486 | 16.2135 | 35.7542 | 49.4412 | 22.1829 | 22.2309 | 15.9189 | 13.0717 | 8.04612 | 10.5261 | 12.1496 | 4.10794 | 4.4874 | 27.9791 | 7.86342 |
(15, 'mrr') | 58.1901 | 19.5215 | 16.9156 | 36.2875 | 50.5697 | 23.5127 | 23.0488 | 15.886 | 13.1331 | 8.38497 | 10.8321 | 12.4829 | 3.99677 | 4.58691 | 28.5628 | 8.05675 |
(20, 'mrr') | 58.1312 | 19.7626 | 17.1061 | 36.6888 | 51.3984 | 24.2156 | 23.8144 | 15.744 | 13.2207 | 8.42841 | 10.7424 | 12.3675 | 4.01913 | 4.49603 | 28.898 | 8.0107 |
(25, 'mrr') | 58.2135 | 19.3948 | 16.7125 | 37.0836 | 51.5466 | 23.8573 | 23.4707 | 15.7727 | 13.1974 | 8.13385 | 10.7643 | 12.3361 | 4.0185 | 4.51245 | 28.8055 | 7.95303 |
(30, 'mrr') | 58.3422 | 19.9796 | 16.9005 | 37.3361 | 52.2049 | 25.0439 | 24.258 | 15.8504 | 13.529 | 8.25035 | 11.0144 | 12.8912 | 3.94366 | 4.48501 | 29.2716 | 8.11691 |
(35, 'mrr') | 58.3317 | 19.8246 | 17.0437 | 37.0317 | 52.0876 | 24.9918 | 24.1882 | 15.7776 | 13.2863 | 8.11579 | 11.0137 | 12.5773 | 3.95141 | 4.43461 | 29.1737 | 8.01855 |
(40, 'mrr') | 58.4374 | 20.0042 | 17.2376 | 37.5069 | 52.4436 | 25.5753 | 24.3363 | 15.8403 | 13.2857 | 8.04121 | 11.0236 | 12.65 | 4.00914 | 4.48272 | 29.4075 | 8.04135 |
(45, 'mrr') | 58.3851 | 20.0087 | 17.1159 | 37.2356 | 52.586 | 25.8343 | 24.3349 | 15.7666 | 13.269 | 7.99957 | 10.8519 | 12.4951 | 3.96799 | 4.50756 | 29.3929 | 7.96441 |
(50, 'mrr') | 58.4344 | 20.066 | 17.2659 | 37.5026 | 52.583 | 25.8256 | 24.5214 | 15.8159 | 13.3767 | 8.00606 | 10.9744 | 12.7093 | 3.98905 | 4.44717 | 29.4879 | 8.02518 |
(55, 'mrr') | 58.5214 | 20.3003 | 17.4971 | 37.7731 | 53.2195 | 26.6214 | 24.9088 | 15.8859 | 13.3979 | 7.99773 | 11.0119 | 12.8666 | 4.00092 | 4.609 | 29.7917 | 8.09724 |
(60, 'mrr') | 58.5588 | 20.2791 | 17.4278 | 37.794 | 53.4732 | 26.7336 | 24.8551 | 15.9778 | 13.3923 | 8.05524 | 10.9982 | 12.7967 | 4.03883 | 4.58863 | 29.8324 | 8.09553 |
(65, 'mrr') | 58.5393 | 20.3012 | 17.3731 | 37.7334 | 53.5801 | 26.7743 | 25.0042 | 15.9129 | 13.4806 | 7.98234 | 10.9909 | 12.871 | 4.0504 | 4.57675 | 29.8555 | 8.09429 |
(70, 'mrr') | 58.5464 | 20.3899 | 17.636 | 37.8725 | 53.5272 | 26.8348 | 25.017 | 15.8722 | 13.3682 | 8.00063 | 10.9787 | 12.8349 | 4.09206 | 4.54549 | 29.896 | 8.09037 |
(75, 'mrr') | 58.5244 | 20.3452 | 17.5419 | 37.9096 | 53.6987 | 26.9608 | 24.9611 | 15.8747 | 13.3377 | 8.0151 | 10.9958 | 12.8542 | 4.07362 | 4.58094 | 29.906 | 8.10395 |
(80, 'mrr') | 58.4666 | 20.3634 | 17.4013 | 37.864 | 53.7288 | 26.872 | 25.0944 | 15.8941 | 13.4476 | 8.00644 | 11.0202 | 12.889 | 4.03659 | 4.56708 | 29.9036 | 8.10385 |
(85, 'mrr') | 58.5246 | 20.3625 | 17.4951 | 37.8034 | 53.7097 | 26.8793 | 25.0511 | 15.7963 | 13.332 | 8.00327 | 10.9794 | 12.8392 | 4.04728 | 4.55166 | 29.8838 | 8.08415 |
(90, 'mrr') | 58.5385 | 20.2787 | 17.4881 | 37.8201 | 53.708 | 26.9801 | 25.1586 | 15.8513 | 13.3464 | 8.01791 | 10.9962 | 12.8424 | 4.04243 | 4.56984 | 29.9078 | 8.09376 |
(95, 'mrr') | 58.5262 | 20.3174 | 17.407 | 37.9197 | 53.704 | 27.007 | 24.9786 | 15.8147 | 13.3705 | 8.03061 | 11.0391 | 12.7607 | 4.0563 | 4.51442 | 29.8939 | 8.08023 |
(100, 'mrr') | 58.4876 | 20.3739 | 17.5426 | 37.8685 | 53.7853 | 27.0437 | 25.0912 | 15.8391 | 13.3677 | 8.03276 | 11.0813 | 12.8224 | 4.02579 | 4.43816 | 29.9333 | 8.08009 |
Test set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 53.3178 | 17.4509 | 13.921 | 34.3557 | 42.5244 | 18.9655 | 19.9409 | 15.5624 | 14.1614 | 3.09049 | 9.33451 | 10.4117 | 3.55259 | 3.61193 | 25.5778 | 6.00025 |
(10, 'mrr') | 60.0538 | 20.7879 | 16.6129 | 38.033 | 47.0486 | 24.1357 | 23.079 | 17.3772 | 15.8912 | 8.24614 | 10.7019 | 11.5071 | 3.87626 | 4.72569 | 29.2244 | 7.81142 |
(15, 'mrr') | 60.0531 | 21.0174 | 17.3599 | 38.6041 | 48.159 | 25.4717 | 23.4817 | 17.3495 | 15.6388 | 8.76846 | 10.9286 | 11.972 | 3.92587 | 4.70564 | 29.6817 | 8.06013 |
(20, 'mrr') | 60.0223 | 21.3595 | 17.3279 | 38.7731 | 48.7933 | 25.9714 | 24.0966 | 17.2853 | 15.8172 | 8.98501 | 10.8567 | 11.8679 | 4.01083 | 4.63997 | 29.9385 | 8.07209 |
(25, 'mrr') | 60.1999 | 21.4644 | 17.2901 | 38.9674 | 49.2416 | 26.0032 | 24.1828 | 17.2671 | 15.7017 | 8.6811 | 11.0215 | 11.7445 | 3.92222 | 4.81752 | 30.0353 | 8.03736 |
(30, 'mrr') | 60.39 | 21.9168 | 17.0032 | 39.2801 | 49.9484 | 27.3184 | 24.6839 | 17.1173 | 15.9443 | 8.57809 | 10.8312 | 12.1397 | 3.83815 | 4.77605 | 30.4003 | 8.03264 |
(35, 'mrr') | 60.3503 | 21.7325 | 17.2967 | 39.1128 | 49.7495 | 27.0008 | 24.6514 | 17.0884 | 15.861 | 8.59063 | 10.7803 | 12.1338 | 3.84769 | 4.80637 | 30.3159 | 8.03174 |
(40, 'mrr') | 60.4626 | 22.0204 | 17.3283 | 39.5281 | 50.6019 | 27.4767 | 24.6566 | 17.0303 | 15.7524 | 8.46947 | 10.864 | 12.333 | 3.92515 | 4.89782 | 30.5397 | 8.09789 |
(45, 'mrr') | 60.3293 | 22.1564 | 17.5824 | 39.4073 | 50.1337 | 27.8943 | 25.0868 | 16.9976 | 15.9754 | 8.70057 | 10.8894 | 12.1503 | 3.98509 | 4.82957 | 30.6181 | 8.111 |
(50, 'mrr') | 60.5006 | 21.9947 | 17.398 | 39.4997 | 50.1538 | 27.7933 | 24.8773 | 16.97 | 15.7931 | 8.42343 | 10.8244 | 12.2081 | 3.92818 | 4.73758 | 30.5534 | 8.02432 |
(55, 'mrr') | 60.5633 | 22.3015 | 17.636 | 39.9431 | 50.9257 | 28.5783 | 25.3599 | 17.0022 | 15.833 | 8.50931 | 10.8985 | 12.411 | 4.0115 | 4.83301 | 30.9048 | 8.13267 |
(60, 'mrr') | 60.5973 | 22.2343 | 17.6546 | 39.9555 | 50.9812 | 28.7155 | 25.2521 | 17.0157 | 15.7824 | 8.48907 | 10.9854 | 12.2893 | 3.96769 | 4.85918 | 30.9098 | 8.11811 |
(65, 'mrr') | 60.5589 | 22.3278 | 17.6482 | 40.0772 | 51.1738 | 28.8743 | 25.255 | 16.9732 | 15.8177 | 8.4574 | 10.9471 | 12.3755 | 3.99949 | 4.80515 | 30.9673 | 8.11693 |
(70, 'mrr') | 60.5047 | 22.2669 | 17.734 | 40.0701 | 51.2012 | 28.9174 | 25.2583 | 16.8859 | 15.7568 | 8.42383 | 11.0485 | 12.3892 | 4.00967 | 4.80891 | 30.955 | 8.13604 |
(75, 'mrr') | 60.5458 | 22.2862 | 17.6367 | 40.2007 | 51.2726 | 28.9536 | 25.2717 | 16.8917 | 15.7468 | 8.43721 | 10.9711 | 12.4433 | 3.97777 | 4.82057 | 30.9784 | 8.13 |
(80, 'mrr') | 60.5429 | 22.2779 | 17.5793 | 40.0852 | 51.1626 | 28.9895 | 25.3941 | 16.8825 | 15.7659 | 8.48395 | 10.9586 | 12.4836 | 3.98999 | 4.7884 | 30.9644 | 8.14091 |
(85, 'mrr') | 60.5592 | 22.352 | 17.6074 | 40.2472 | 51.2478 | 28.9383 | 25.3371 | 16.908 | 15.7983 | 8.41977 | 10.9511 | 12.4619 | 4.01124 | 4.80731 | 30.9995 | 8.13026 |
(90, 'mrr') | 60.5871 | 22.3782 | 17.4865 | 40.2134 | 51.3309 | 29.0312 | 25.318 | 16.9407 | 15.744 | 8.39682 | 10.9253 | 12.4119 | 4.03235 | 4.80307 | 31.0033 | 8.11389 |
(95, 'mrr') | 60.5521 | 22.3003 | 17.5146 | 40.4396 | 51.5141 | 28.99 | 25.3643 | 16.8287 | 15.7321 | 8.39906 | 11.0132 | 12.4137 | 4.01778 | 4.77633 | 31.0262 | 8.12402 |
(100, 'mrr') | 60.5551 | 22.4637 | 17.6964 | 40.2327 | 51.3726 | 29.0957 | 25.449 | 16.8115 | 15.7569 | 8.42328 | 10.9956 | 12.3207 | 4.04476 | 4.85645 | 31.0482 | 8.12816 |
Results from versions before e83a95a are obtained from the training process where both the KG embedding and the MLP is trainable, which is an accidental mistake and NOT what proposed in the paper. The results with trainable KGE is be weaker than those with freezed KGE which is proposed in the paper. Click to see the sample output trajectory of trainable KGE (results of weak implementation of LMPNN)
For FB15k-237, a possible output trajectory could be like
Validation Set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 43.3374 | 9.3963 | 7.36107 | 28.8171 | 43.2848 | 12.7592 | 11.338 | 10.9825 | 8.06806 | 4.89454 | 9.03825 | 6.84014 | 3.57948 | 3.43009 | 19.4827 | 5.5565 |
(10, 'mrr') | 43.5847 | 10.2061 | 8.38958 | 30.1158 | 44.8668 | 13.7348 | 12.4519 | 11.1331 | 8.40302 | 5.50171 | 9.92851 | 7.19045 | 3.68003 | 3.68664 | 20.3207 | 5.99747 |
(15, 'mrr') | 43.1136 | 9.93098 | 8.41377 | 30.7293 | 45.7028 | 14.1373 | 12.4096 | 11.17 | 8.48811 | 5.90808 | 9.97395 | 7.14056 | 3.78556 | 3.88563 | 20.455 | 6.13876 |
(20, 'mrr') | 43.6212 | 10.5731 | 8.92229 | 30.8057 | 45.9869 | 15.2658 | 13.1256 | 11.0792 | 8.84129 | 5.74387 | 10.4465 | 7.32727 | 3.87902 | 3.76653 | 20.9135 | 6.23263 |
(25, 'mrr') | 43.5993 | 10.6286 | 9.14751 | 30.7887 | 46.2739 | 16.2113 | 13.8994 | 11.2555 | 8.81353 | 5.98244 | 10.6118 | 7.51721 | 3.7699 | 3.55735 | 21.1798 | 6.28774 |
(30, 'mrr') | 43.6251 | 10.8747 | 9.03938 | 30.9388 | 46.5563 | 16.4211 | 13.543 | 11.2324 | 9.15598 | 5.83169 | 10.5604 | 7.63332 | 3.9878 | 3.64097 | 21.2652 | 6.33083 |
(35, 'mrr') | 43.4778 | 11.0762 | 9.3528 | 31.3629 | 47.202 | 17.1742 | 13.701 | 11.2211 | 9.16062 | 5.97082 | 10.7614 | 7.62482 | 3.90409 | 3.7512 | 21.5254 | 6.40247 |
(40, 'mrr') | 43.4053 | 11.0612 | 9.56793 | 31.3726 | 47.2989 | 16.9117 | 13.6576 | 10.8811 | 9.21064 | 5.86364 | 10.6366 | 7.91589 | 3.90675 | 3.52537 | 21.4852 | 6.36965 |
(45, 'mrr') | 43.2611 | 11.0465 | 9.57849 | 31.2661 | 47.44 | 17.705 | 13.9036 | 11.0584 | 9.11347 | 5.98817 | 10.6902 | 7.86165 | 3.93147 | 3.75511 | 21.5969 | 6.44531 |
(50, 'mrr') | 42.9117 | 11.4134 | 9.45842 | 31.4618 | 47.5948 | 17.8229 | 13.9 | 11.0091 | 9.40493 | 5.89662 | 10.722 | 7.65385 | 4.07289 | 3.60841 | 21.6641 | 6.39074 |
(55, 'mrr') | 43.2503 | 11.6637 | 9.83592 | 31.7507 | 48.095 | 19.3408 | 14.4881 | 11.0594 | 9.40362 | 6.04338 | 10.8817 | 8.20831 | 4.18475 | 3.58321 | 22.0986 | 6.58026 |
(60, 'mrr') | 43.3788 | 11.7293 | 10.0087 | 31.8454 | 48.1824 | 19.6966 | 14.5867 | 11.0317 | 9.52452 | 6.06797 | 10.8322 | 8.18048 | 4.23077 | 3.65369 | 22.2205 | 6.59303 |
(65, 'mrr') | 43.265 | 11.6121 | 10.0383 | 32.0212 | 48.3501 | 19.8917 | 14.6462 | 11.0356 | 9.44041 | 6.03938 | 10.9391 | 8.08408 | 4.3106 | 3.65148 | 22.2556 | 6.60492 |
(70, 'mrr') | 43.2776 | 11.6904 | 9.98802 | 32.0637 | 48.5154 | 20.0188 | 14.7324 | 11.0485 | 9.54078 | 5.98941 | 11.0414 | 8.21996 | 4.22696 | 3.7204 | 22.3195 | 6.63963 |
(75, 'mrr') | 43.3091 | 11.7581 | 10.0377 | 32.1079 | 48.6767 | 20.1973 | 14.8317 | 11.0657 | 9.52549 | 6.03904 | 11.0798 | 8.28582 | 4.34577 | 3.63607 | 22.39 | 6.6773 |
(80, 'mrr') | 43.3248 | 11.7603 | 9.98525 | 32.2027 | 48.5901 | 20.2498 | 14.8366 | 11.0489 | 9.5386 | 5.98985 | 11.0667 | 8.26597 | 4.35415 | 3.66858 | 22.393 | 6.66906 |
(85, 'mrr') | 43.2465 | 11.7877 | 10.0583 | 32.1016 | 48.7363 | 20.4814 | 14.9262 | 10.9962 | 9.51707 | 6.02979 | 11.2297 | 8.3184 | 4.39278 | 3.72155 | 22.4279 | 6.73846 |
(90, 'mrr') | 43.376 | 11.6823 | 10.0461 | 32.241 | 48.6458 | 20.4281 | 14.8565 | 11.0369 | 9.5371 | 6.03664 | 11.1348 | 8.34831 | 4.32066 | 3.62985 | 22.4278 | 6.69404 |
(95, 'mrr') | 43.291 | 11.7701 | 9.97534 | 32.3046 | 48.8179 | 20.5445 | 14.8694 | 11.1149 | 9.53749 | 6.02634 | 11.2056 | 8.25653 | 4.34473 | 3.6933 | 22.4695 | 6.70531 |
(100, 'mrr') | 43.2896 | 11.8108 | 9.95793 | 32.3719 | 48.9575 | 20.4634 | 14.8929 | 11.0351 | 9.56184 | 6.06656 | 11.1147 | 8.34275 | 4.35363 | 3.69552 | 22.4823 | 6.71463 |
Test set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 44.9465 | 10.4843 | 8.6229 | 31.7221 | 44.4341 | 14.2661 | 14.1401 | 13.6675 | 9.80541 | 6.86755 | 11.2436 | 6.54754 | 3.84052 | 4.55932 | 21.3432 | 6.61171 |
(10, 'mrr') | 45.1145 | 11.2116 | 9.19404 | 32.7899 | 46.5547 | 15.7508 | 15.1701 | 13.5092 | 9.95767 | 7.41947 | 11.6497 | 6.58225 | 3.93812 | 4.52801 | 22.1392 | 6.8235 |
(15, 'mrr') | 44.7565 | 11.6183 | 9.65737 | 33.0242 | 46.9324 | 16.0322 | 15.6126 | 13.9755 | 10.2088 | 7.83579 | 12.0131 | 6.88489 | 4.00784 | 4.6131 | 22.4242 | 7.07094 |
(20, 'mrr') | 45.3177 | 12.0233 | 9.57721 | 33.2067 | 47.472 | 17.4125 | 16.2467 | 13.6488 | 10.4001 | 8.05987 | 12.2843 | 7.14386 | 4.14163 | 4.45509 | 22.8117 | 7.21695 |
(25, 'mrr') | 45.1459 | 12.1309 | 9.8724 | 33.4177 | 47.7942 | 17.7643 | 16.4459 | 13.4371 | 10.4981 | 7.80966 | 12.3091 | 7.22651 | 4.23409 | 4.35564 | 22.9452 | 7.187 |
(30, 'mrr') | 45.2453 | 12.516 | 10.2946 | 33.8225 | 47.6455 | 18.1683 | 16.3805 | 13.5795 | 10.5048 | 7.82047 | 12.0024 | 7.65289 | 4.37242 | 4.55625 | 23.1285 | 7.28089 |
(35, 'mrr') | 44.9832 | 12.6714 | 10.3581 | 33.9382 | 48.1022 | 19.0562 | 16.7391 | 13.4728 | 10.3644 | 7.80266 | 12.4172 | 7.50164 | 4.27899 | 4.18954 | 23.2984 | 7.23801 |
(40, 'mrr') | 45.0497 | 12.9713 | 10.5534 | 33.9162 | 48.2494 | 19.4182 | 17.0646 | 13.3876 | 10.7647 | 7.76955 | 12.0863 | 7.76417 | 4.58433 | 4.18861 | 23.4861 | 7.27859 |
(45, 'mrr') | 44.8709 | 12.7598 | 10.6207 | 34.0123 | 48.4076 | 20.1168 | 16.7293 | 13.4826 | 10.7217 | 7.7207 | 12.2151 | 7.79834 | 4.38069 | 4.2472 | 23.5246 | 7.27242 |
(50, 'mrr') | 44.4331 | 12.9428 | 10.3695 | 33.9687 | 48.3719 | 20.2204 | 17.002 | 13.2265 | 10.7709 | 7.51472 | 12.3501 | 7.86527 | 4.52629 | 4.30918 | 23.4784 | 7.31311 |
(55, 'mrr') | 44.8656 | 13.2094 | 10.7748 | 34.5006 | 48.9649 | 21.6445 | 17.5028 | 13.3423 | 10.9163 | 7.63899 | 12.6289 | 8.30786 | 4.61518 | 4.30892 | 23.969 | 7.49997 |
(60, 'mrr') | 44.9011 | 13.3243 | 10.8495 | 34.6471 | 49.0874 | 22.1415 | 17.4582 | 13.3771 | 10.8835 | 7.62007 | 12.5587 | 8.2811 | 4.68471 | 4.34016 | 24.0744 | 7.49695 |
(65, 'mrr') | 44.882 | 13.4375 | 10.8931 | 34.7594 | 49.126 | 22.3102 | 17.6696 | 13.408 | 10.9255 | 7.63332 | 12.6301 | 8.24105 | 4.70683 | 4.2976 | 24.1568 | 7.50179 |
(70, 'mrr') | 44.8828 | 13.651 | 11.0718 | 34.7735 | 49.2482 | 22.703 | 17.7788 | 13.4791 | 11.0766 | 7.68911 | 12.7907 | 8.35583 | 4.76243 | 4.40152 | 24.2961 | 7.59992 |
(75, 'mrr') | 44.9174 | 13.555 | 11.012 | 34.906 | 49.3564 | 22.7873 | 17.6738 | 13.396 | 11.0057 | 7.63671 | 12.7132 | 8.41619 | 4.61401 | 4.29353 | 24.2899 | 7.53473 |
(80, 'mrr') | 44.9689 | 13.694 | 11.0733 | 34.9882 | 49.5035 | 22.9782 | 17.7274 | 13.3799 | 11.0732 | 7.6816 | 12.7935 | 8.37103 | 4.75101 | 4.35969 | 24.3763 | 7.59136 |
(85, 'mrr') | 44.8746 | 13.5736 | 11.0516 | 35.0654 | 49.612 | 23.1731 | 17.7409 | 13.4019 | 11.0125 | 7.63303 | 12.8699 | 8.32122 | 4.76494 | 4.31249 | 24.3895 | 7.58032 |
(90, 'mrr') | 44.963 | 13.6078 | 11.0434 | 35.0212 | 49.539 | 22.9025 | 17.6933 | 13.3906 | 10.9815 | 7.68771 | 12.8578 | 8.27871 | 4.70053 | 4.26779 | 24.3491 | 7.5585 |
(95, 'mrr') | 44.8846 | 13.665 | 11.0756 | 35.1892 | 49.8396 | 23.0492 | 17.7944 | 13.3872 | 11.0303 | 7.66467 | 12.8382 | 8.39552 | 4.71225 | 4.3251 | 24.435 | 7.58714 |
(100, 'mrr') | 44.9048 | 13.6668 | 11.1112 | 35.2322 | 49.6774 | 22.859 | 17.8386 | 13.3444 | 11.0184 | 7.70513 | 12.857 | 8.45513 | 4.74044 | 4.26359 | 24.4059 | 7.60425 |
For FB15k dataset, a possible training trajectory could be
Validation set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 72.5264 | 18.9707 | 15.167 | 50.393 | 64.2903 | 21.3955 | 22.4212 | 23.7883 | 17.7087 | 15.89 | 14.4604 | 9.5854 | 6.1095 | 8.80865 | 34.0735 | 10.9708 |
(10, 'mrr') | 73.4743 | 21.3927 | 16.8809 | 51.2315 | 65.4991 | 25.2254 | 25.0429 | 24.3405 | 18.9479 | 16.2819 | 14.5931 | 10.1545 | 7.01239 | 10.0011 | 35.7817 | 11.6086 |
(15, 'mrr') | 74.0354 | 22.2156 | 17.726 | 51.3907 | 65.5969 | 27.1767 | 25.7572 | 24.2847 | 19.393 | 16.4947 | 14.6412 | 10.7316 | 7.59753 | 10.4718 | 36.3974 | 11.9873 |
(20, 'mrr') | 74.1509 | 23.2951 | 18.3861 | 52.2457 | 66.8295 | 28.6767 | 26.7481 | 24.5087 | 20.1395 | 16.8086 | 15.0185 | 10.912 | 8.17509 | 10.3257 | 37.22 | 12.248 |
(25, 'mrr') | 74.3886 | 23.6987 | 18.7169 | 52.2513 | 66.6926 | 29.6802 | 27.3806 | 24.6967 | 20.545 | 16.4154 | 15.0412 | 11.3016 | 8.45187 | 10.6056 | 37.5612 | 12.3631 |
(30, 'mrr') | 74.5874 | 24.1382 | 18.9701 | 52.1197 | 67.0708 | 31.0522 | 27.5473 | 24.7312 | 20.6051 | 16.5712 | 15.397 | 11.4983 | 8.42595 | 10.7639 | 37.8691 | 12.5313 |
(35, 'mrr') | 74.6497 | 24.6292 | 19.136 | 52.0571 | 66.9698 | 32.1509 | 28.2427 | 24.8105 | 20.8558 | 16.3211 | 15.2092 | 11.6967 | 8.96677 | 10.7479 | 38.1669 | 12.5883 |
(40, 'mrr') | 74.8573 | 24.9687 | 19.3029 | 52.2527 | 67.0853 | 33.2529 | 28.3276 | 24.8803 | 21.0188 | 16.4776 | 15.1542 | 11.8346 | 9.1182 | 11.0053 | 38.4385 | 12.718 |
(45, 'mrr') | 74.8077 | 25.2605 | 19.5295 | 52.5364 | 67.5456 | 33.4174 | 28.8868 | 24.7764 | 20.9093 | 16.5528 | 15.2427 | 11.7762 | 9.26389 | 11.0442 | 38.63 | 12.776 |
(50, 'mrr') | 74.7147 | 25.3948 | 19.6865 | 52.1841 | 66.9479 | 33.9548 | 28.9421 | 24.589 | 21.1452 | 16.2819 | 15.3491 | 11.9337 | 9.17793 | 10.933 | 38.6177 | 12.7351 |
(55, 'mrr') | 75.2392 | 26.0655 | 20.4374 | 52.7575 | 68.0126 | 35.7402 | 29.763 | 24.9457 | 21.5412 | 16.7172 | 15.8523 | 12.292 | 9.61107 | 11.1913 | 39.3892 | 13.1328 |
(60, 'mrr') | 75.338 | 26.2711 | 20.4958 | 53.005 | 68.2882 | 36.3051 | 29.9832 | 24.9604 | 21.5683 | 16.7698 | 16.0298 | 12.4912 | 9.97094 | 11.293 | 39.5795 | 13.311 |
(65, 'mrr') | 75.4915 | 26.3433 | 20.7189 | 53.1031 | 68.4577 | 36.5135 | 30.125 | 24.9532 | 21.6608 | 16.7159 | 16.1205 | 12.445 | 10.1391 | 11.28 | 39.7075 | 13.3401 |
(70, 'mrr') | 75.6082 | 26.5294 | 20.858 | 53.2512 | 68.4007 | 36.8932 | 30.2989 | 25.08 | 21.7732 | 16.8102 | 16.2661 | 12.5809 | 10.1644 | 11.3312 | 39.8548 | 13.4306 |
(75, 'mrr') | 75.6264 | 26.779 | 20.9627 | 53.4878 | 68.5542 | 36.972 | 30.3147 | 25.0093 | 21.8702 | 16.8719 | 16.4148 | 12.5987 | 10.1621 | 11.4264 | 39.9529 | 13.4948 |
(80, 'mrr') | 75.6596 | 26.7891 | 20.9883 | 53.5604 | 68.6648 | 37.0346 | 30.4991 | 25.0008 | 21.9547 | 16.9228 | 16.4881 | 12.6153 | 10.5 | 11.3379 | 40.0168 | 13.5728 |
(85, 'mrr') | 75.7871 | 26.9072 | 21.0725 | 53.4992 | 68.6661 | 37.3166 | 30.5706 | 25.0393 | 21.9667 | 16.9707 | 16.5363 | 12.6744 | 10.5678 | 11.3997 | 40.0917 | 13.6298 |
(90, 'mrr') | 75.7685 | 26.9004 | 21.1033 | 53.5543 | 68.6671 | 37.4762 | 30.6839 | 25.0264 | 21.9165 | 16.9988 | 16.5336 | 12.6405 | 10.6902 | 11.2698 | 40.1219 | 13.6266 |
(95, 'mrr') | 75.8367 | 27.112 | 21.1882 | 53.6209 | 68.8099 | 37.4012 | 30.7478 | 25.1237 | 22.027 | 17.024 | 16.577 | 12.7249 | 10.588 | 11.4293 | 40.2075 | 13.6687 |
(100, 'mrr') | 75.821 | 26.9972 | 21.1739 | 53.5756 | 68.8016 | 37.3668 | 30.7325 | 25.0958 | 21.967 | 16.9533 | 16.6115 | 12.6655 | 10.5621 | 11.4197 | 40.1702 | 13.6424 |
Test set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 79.6252 | 27.0495 | 22.0475 | 63.0068 | 71.0271 | 26.8145 | 31.631 | 33.8454 | 26.428 | 25.348 | 26.4778 | 11.1268 | 7.37001 | 12.2931 | 42.3861 | 16.5231 |
(10, 'mrr') | 80.8636 | 30.8524 | 24.7873 | 64.5688 | 72.6059 | 32.4962 | 34.8987 | 34.8972 | 28.6328 | 26.4557 | 26.8073 | 12.2922 | 8.45513 | 14.3868 | 44.9559 | 17.6794 |
(15, 'mrr') | 81.5185 | 32.2857 | 25.5074 | 64.8339 | 72.9823 | 34.3122 | 36.1444 | 34.3031 | 29.9918 | 26.6691 | 27.0838 | 13.1753 | 9.03323 | 14.2974 | 45.7644 | 18.0518 |
(20, 'mrr') | 81.9271 | 34.1768 | 26.5718 | 65.453 | 73.8918 | 36.7933 | 37.8788 | 34.451 | 31.1975 | 26.7253 | 26.6824 | 13.0502 | 9.25748 | 14.8176 | 46.9268 | 18.1066 |
(25, 'mrr') | 82.1761 | 35.3178 | 27.2472 | 65.4745 | 74.0307 | 38.0896 | 38.8817 | 34.9898 | 31.5301 | 26.2991 | 26.4839 | 13.6902 | 9.53723 | 14.8901 | 47.5264 | 18.1801 |
(30, 'mrr') | 82.3555 | 35.6731 | 27.6514 | 65.0369 | 73.8001 | 40.1415 | 38.939 | 34.6648 | 31.4103 | 25.8967 | 26.2618 | 14.1097 | 9.66685 | 14.7401 | 47.7414 | 18.135 |
(35, 'mrr') | 82.5593 | 36.5284 | 27.9251 | 65.3617 | 74.0039 | 40.9399 | 39.6183 | 34.3864 | 31.5693 | 25.4552 | 26.0457 | 14.1313 | 9.76101 | 14.6804 | 48.0992 | 18.0147 |
(40, 'mrr') | 82.9059 | 37.9752 | 28.8003 | 65.5398 | 74.1289 | 42.1209 | 40.5559 | 34.4631 | 32.6308 | 25.4917 | 25.8993 | 14.6716 | 10.0891 | 14.8624 | 48.7912 | 18.2028 |
(45, 'mrr') | 82.8705 | 37.8872 | 29.0582 | 65.5965 | 74.1744 | 42.4366 | 40.5069 | 34.3821 | 32.6076 | 25.2364 | 25.7732 | 14.508 | 10.2368 | 14.9662 | 48.8356 | 18.1441 |
(50, 'mrr') | 82.9409 | 38.4537 | 29.3314 | 65.409 | 74.1168 | 43.6435 | 40.9284 | 34.5042 | 32.8697 | 24.8741 | 25.5653 | 14.8343 | 10.3195 | 15.0117 | 49.1331 | 18.1209 |
(55, 'mrr') | 83.6995 | 40.1008 | 30.5288 | 66.6587 | 75.1619 | 45.9406 | 42.3054 | 34.6511 | 33.7162 | 25.3503 | 26.1966 | 15.3033 | 10.573 | 15.2319 | 50.307 | 18.531 |
(60, 'mrr') | 83.8872 | 40.7408 | 30.9499 | 67.0044 | 75.4608 | 46.6269 | 42.8369 | 34.5836 | 34.0223 | 25.475 | 26.432 | 15.5052 | 10.7476 | 15.2947 | 50.6792 | 18.6909 |
(65, 'mrr') | 84.0518 | 40.849 | 30.9894 | 67.2783 | 75.6766 | 46.6758 | 42.9262 | 34.6531 | 34.0006 | 25.4424 | 26.5234 | 15.5519 | 10.7439 | 15.2883 | 50.789 | 18.71 |
(70, 'mrr') | 84.2106 | 41.3092 | 31.257 | 67.3251 | 75.8018 | 47.0875 | 43.2535 | 34.654 | 34.1175 | 25.3795 | 26.5757 | 15.6222 | 10.8237 | 15.2704 | 51.0018 | 18.7343 |
(75, 'mrr') | 84.2636 | 41.5525 | 31.5103 | 67.5114 | 75.7793 | 47.4208 | 43.6347 | 34.6501 | 34.2698 | 25.5468 | 26.6772 | 15.6955 | 10.8787 | 15.3086 | 51.1769 | 18.8214 |
(80, 'mrr') | 84.3512 | 41.571 | 31.4847 | 67.5161 | 75.975 | 47.2654 | 43.582 | 34.6848 | 34.3082 | 25.5773 | 26.7497 | 15.7046 | 10.9515 | 15.3087 | 51.1932 | 18.8584 |
(85, 'mrr') | 84.4401 | 41.7911 | 31.6551 | 67.6595 | 76.0263 | 47.5891 | 43.8328 | 34.6937 | 34.4209 | 25.6277 | 26.8003 | 15.8049 | 10.9324 | 15.4512 | 51.3454 | 18.9233 |
(90, 'mrr') | 84.4638 | 41.8142 | 31.7417 | 67.8218 | 76.1267 | 47.763 | 43.5757 | 34.6339 | 34.3527 | 25.4679 | 26.857 | 15.781 | 11.0279 | 15.3128 | 51.3659 | 18.8893 |
(95, 'mrr') | 84.6069 | 41.7902 | 31.7677 | 67.8683 | 76.2519 | 47.8811 | 43.8575 | 34.5829 | 34.5235 | 25.4988 | 26.8536 | 15.815 | 11.0273 | 15.3696 | 51.4589 | 18.9129 |
(100, 'mrr') | 84.5962 | 41.8732 | 31.7129 | 67.8121 | 76.2344 | 47.7903 | 43.8667 | 34.6276 | 34.5437 | 25.6159 | 26.8515 | 15.8538 | 11.0693 | 15.3367 | 51.4508 | 18.9455 |
For NELL dataset, a possible training trajectory could be
Validation set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 58.1204 | 17.1394 | 14.8171 | 35.1191 | 48.1434 | 18.216 | 19.8213 | 15.6274 | 12.3501 | 7.47669 | 10.6017 | 11.8062 | 4.0412 | 4.38074 | 26.5949 | 7.66129 |
(10, 'mrr') | 57.9101 | 17.9723 | 15.7368 | 35.6915 | 49.0143 | 19.5558 | 20.8033 | 15.7196 | 12.6459 | 8.01705 | 10.6385 | 12.3644 | 4.12027 | 4.34362 | 27.2277 | 7.89678 |
(15, 'mrr') | 57.9716 | 19.0338 | 16.2968 | 35.9256 | 49.8854 | 22.1367 | 21.8386 | 15.4901 | 12.8566 | 7.80956 | 10.5861 | 12.4902 | 4.04185 | 4.31369 | 27.9373 | 7.84828 |
(20, 'mrr') | 57.4168 | 18.7561 | 16.7115 | 35.977 | 49.8357 | 20.4362 | 21.6066 | 15.3487 | 12.7226 | 7.66178 | 10.4122 | 12.2952 | 4.02626 | 4.42086 | 27.6457 | 7.76325 |
(25, 'mrr') | 57.0351 | 19.1695 | 16.6744 | 36.701 | 51.1331 | 23.5681 | 22.4403 | 15.3076 | 12.8107 | 7.91373 | 10.5872 | 12.7712 | 4.07904 | 4.35931 | 28.3155 | 7.94209 |
(30, 'mrr') | 57.1963 | 19.2891 | 16.9377 | 36.7586 | 51.0399 | 23.756 | 22.522 | 15.2679 | 12.7877 | 7.5976 | 10.5313 | 12.6761 | 4.02105 | 4.47263 | 28.395 | 7.85975 |
(35, 'mrr') | 56.9236 | 19.3807 | 17.0099 | 36.9825 | 51.3761 | 23.6143 | 22.3366 | 15.2227 | 13.0573 | 7.32792 | 10.6499 | 12.4046 | 4.1504 | 4.44791 | 28.4337 | 7.79616 |
(40, 'mrr') | 56.8403 | 19.4833 | 16.8577 | 36.5935 | 51.3677 | 23.9328 | 22.81 | 15.1275 | 13.0253 | 7.45651 | 10.7676 | 12.6684 | 4.27722 | 4.56407 | 28.4487 | 7.94677 |
(45, 'mrr') | 56.5277 | 19.4434 | 16.9731 | 36.6514 | 50.8131 | 23.8585 | 22.523 | 14.9389 | 13.0073 | 7.48076 | 10.4497 | 12.7325 | 4.09825 | 4.52448 | 28.304 | 7.85714 |
(50, 'mrr') | 56.5823 | 19.3082 | 17.0722 | 36.9401 | 51.1826 | 24.1982 | 22.5559 | 14.8032 | 12.8865 | 7.30333 | 10.58 | 12.8101 | 4.07694 | 4.2912 | 28.3921 | 7.81231 |
(55, 'mrr') | 56.7491 | 19.6617 | 17.3232 | 37.4124 | 51.9701 | 25.0041 | 23.0953 | 14.9818 | 12.9978 | 7.29917 | 10.6776 | 13.0981 | 4.1533 | 4.38353 | 28.7995 | 7.92233 |
(60, 'mrr') | 56.747 | 19.7013 | 17.3851 | 37.4219 | 51.9863 | 25.0253 | 23.2136 | 15.0225 | 13.0185 | 7.31288 | 10.7236 | 13.1495 | 4.09421 | 4.39861 | 28.8357 | 7.93576 |
(65, 'mrr') | 56.7386 | 19.7831 | 17.3879 | 37.5423 | 51.9313 | 25.2353 | 23.2883 | 14.9899 | 13.0879 | 7.33864 | 10.685 | 13.1793 | 4.1111 | 4.405 | 28.8872 | 7.9438 |
(70, 'mrr') | 56.7031 | 19.809 | 17.4155 | 37.5206 | 52.1556 | 25.4837 | 23.2963 | 15.0402 | 13.174 | 7.32878 | 10.7495 | 13.2333 | 4.09398 | 4.40422 | 28.9553 | 7.96194 |
(75, 'mrr') | 56.6914 | 19.7878 | 17.407 | 37.4702 | 52.2481 | 25.3543 | 23.3908 | 15.0409 | 13.1152 | 7.31722 | 10.7442 | 13.1681 | 4.13749 | 4.43393 | 28.9451 | 7.96018 |
(80, 'mrr') | 56.7012 | 19.8272 | 17.4449 | 37.5907 | 52.2383 | 25.4022 | 23.4482 | 14.989 | 13.0254 | 7.35492 | 10.777 | 13.1616 | 4.14352 | 4.39464 | 28.963 | 7.96634 |
(85, 'mrr') | 56.7686 | 19.8192 | 17.5098 | 37.4502 | 52.1744 | 25.5558 | 23.3911 | 15.0243 | 13.064 | 7.28512 | 10.8985 | 13.197 | 4.1342 | 4.45095 | 28.973 | 7.99316 |
(90, 'mrr') | 56.7139 | 19.8626 | 17.4418 | 37.6441 | 52.174 | 25.4519 | 23.5212 | 14.9292 | 13.0997 | 7.30827 | 10.9621 | 13.1915 | 4.17801 | 4.43536 | 28.982 | 8.01505 |
(95, 'mrr') | 56.6114 | 19.8485 | 17.6015 | 37.5606 | 52.3552 | 25.4303 | 23.4222 | 14.9639 | 13.0974 | 7.3714 | 10.9159 | 13.2139 | 4.17094 | 4.42943 | 28.9879 | 8.02032 |
(100, 'mrr') | 56.5304 | 19.837 | 17.5056 | 37.557 | 52.61 | 25.68 | 23.4784 | 14.9258 | 13.0932 | 7.39956 | 10.8602 | 13.1604 | 4.17135 | 4.40587 | 29.0242 | 7.99949 |
Test set | 1p | 2p | 3p | 2i | 3i | pi | ip | 2u | up | 2in | 3in | inp | pin | pni | epfo mean | Neg mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(5, 'mrr') | 59.9925 | 18.7431 | 15.3488 | 37.131 | 45.7525 | 19.6135 | 20.6219 | 17.2678 | 14.6512 | 7.65617 | 10.6113 | 11.183 | 3.77651 | 4.2455 | 27.6802 | 7.4945 |
(10, 'mrr') | 59.3839 | 19.619 | 15.7485 | 37.7121 | 46.9139 | 21.1344 | 21.3127 | 16.9185 | 14.8788 | 8.27667 | 10.6757 | 11.5308 | 3.65816 | 4.32677 | 28.1802 | 7.69362 |
(15, 'mrr') | 59.515 | 20.5792 | 16.5123 | 38.2234 | 47.3892 | 23.91 | 22.5951 | 16.8399 | 15.4843 | 8.11972 | 10.6834 | 12.132 | 3.79222 | 4.60354 | 29.0054 | 7.86619 |
(20, 'mrr') | 59.0143 | 20.6289 | 17.0332 | 38.2814 | 47.7713 | 21.9448 | 22.3699 | 16.8168 | 15.3931 | 7.85623 | 10.8544 | 11.9253 | 3.80776 | 3.9679 | 28.806 | 7.68231 |
(25, 'mrr') | 58.7151 | 21.418 | 17.1238 | 38.6686 | 48.7802 | 24.9183 | 22.9127 | 16.5135 | 15.4847 | 8.29464 | 10.7124 | 12.1862 | 3.90752 | 4.75549 | 29.3927 | 7.97125 |
(30, 'mrr') | 58.7759 | 21.42 | 17.1072 | 38.729 | 48.6958 | 24.9884 | 22.9775 | 16.5603 | 15.5697 | 7.92933 | 10.7024 | 12.1284 | 4.05308 | 4.57014 | 29.4249 | 7.87666 |
(35, 'mrr') | 58.5786 | 21.377 | 17.0758 | 38.9681 | 48.9368 | 25.2203 | 22.4404 | 16.4391 | 15.3977 | 7.92863 | 10.5248 | 12.2395 | 3.94388 | 4.69192 | 29.3815 | 7.86574 |
(40, 'mrr') | 58.3774 | 21.4076 | 17.0121 | 39.0265 | 49.08 | 25.3503 | 23.0431 | 16.1658 | 15.5395 | 7.9038 | 10.4779 | 12.3383 | 3.98636 | 4.66744 | 29.4447 | 7.87476 |
(45, 'mrr') | 58.0577 | 21.2919 | 17.2616 | 38.8111 | 48.8938 | 25.5967 | 23.1196 | 16.1437 | 15.38 | 7.93512 | 10.43 | 12.1186 | 3.95103 | 4.61853 | 29.3951 | 7.81065 |
(50, 'mrr') | 58.2683 | 21.2357 | 17.0527 | 39.0259 | 48.6985 | 25.8154 | 22.7295 | 16.2029 | 15.108 | 7.81959 | 10.5743 | 11.8353 | 3.9347 | 4.52063 | 29.3486 | 7.7369 |
(55, 'mrr') | 58.4405 | 21.8109 | 17.518 | 39.4844 | 49.5178 | 26.5499 | 23.3775 | 16.2771 | 15.5987 | 7.91742 | 10.5566 | 12.1564 | 3.93595 | 4.59566 | 29.8417 | 7.8324 |
(60, 'mrr') | 58.4016 | 21.886 | 17.6116 | 39.6262 | 49.5139 | 26.4611 | 23.2744 | 16.2556 | 15.4958 | 7.90128 | 10.5776 | 12.3606 | 3.93631 | 4.58478 | 29.8362 | 7.87211 |
(65, 'mrr') | 58.3851 | 21.8665 | 17.5549 | 39.5868 | 49.6965 | 26.753 | 23.4442 | 16.2629 | 15.5942 | 7.90126 | 10.5395 | 12.3257 | 4.00136 | 4.59561 | 29.9049 | 7.87268 |
(70, 'mrr') | 58.3645 | 21.8921 | 17.6507 | 39.5146 | 49.9237 | 26.8391 | 23.553 | 16.2191 | 15.5815 | 7.85621 | 10.5537 | 12.3672 | 3.96091 | 4.63597 | 29.9487 | 7.87479 |
(75, 'mrr') | 58.3917 | 21.9669 | 17.7499 | 39.7617 | 49.9059 | 26.797 | 23.6986 | 16.1471 | 15.7068 | 7.90412 | 10.5253 | 12.3506 | 3.97828 | 4.63258 | 30.014 | 7.87817 |
(80, 'mrr') | 58.3979 | 22.1004 | 17.8992 | 39.8158 | 49.8562 | 27.1052 | 23.7746 | 16.2492 | 15.7949 | 7.94933 | 10.5536 | 12.3678 | 3.97498 | 4.61852 | 30.1104 | 7.89284 |
(85, 'mrr') | 58.3532 | 22.0636 | 17.7837 | 39.9643 | 50.0419 | 27.1929 | 23.7004 | 16.2874 | 15.6986 | 7.92375 | 10.549 | 12.439 | 3.98941 | 4.65393 | 30.1207 | 7.911 |
(90, 'mrr') | 58.3807 | 22.1138 | 17.7913 | 39.807 | 50.0646 | 27.2867 | 23.715 | 16.2238 | 15.7525 | 7.8916 | 10.5542 | 12.402 | 4.04165 | 4.60234 | 30.1262 | 7.89835 |
(95, 'mrr') | 58.3548 | 21.9695 | 17.8834 | 39.8838 | 50.0381 | 27.0707 | 23.5618 | 16.1987 | 15.5789 | 7.87723 | 10.5658 | 12.3075 | 4.06027 | 4.62175 | 30.06 | 7.88651 |
(100, 'mrr') | 58.2411 | 22.1544 | 17.8277 | 39.9782 | 50.2438 | 27.1149 | 23.6624 | 16.2382 | 15.6717 | 7.91782 | 10.6511 | 12.4242 | 3.99122 | 4.63306 | 30.1258 | 7.92348 |
@inproceedings{LMPNN,
author = {Zihao Wang and
Yangqiu Song and
Ginny Y. Wong and
Simon See},
title = {Logical Message Passing Networks with One-hop Inference on Atomic Formulas},
booktitle = {The Eleventh International Conference on Learning Representations, {ICLR} 2023, Kigali Rwanda, May 1-5, 2023},
publisher = {OpenReview.net},
year = {2023},
url = {https://openreview.net/forum?id=SoyOsp7i_l},
}