-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
276 additions
and
0 deletions.
There are no files selected for viewing
28 changes: 28 additions & 0 deletions
28
project/Logistic regression/Sample data for Logistic Regression.csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
age,bought_insurance | ||
22,0 | ||
25,0 | ||
47,1 | ||
52,0 | ||
46,1 | ||
56,1 | ||
55,0 | ||
60,1 | ||
62,1 | ||
61,1 | ||
18,0 | ||
28,0 | ||
27,0 | ||
29,0 | ||
49,1 | ||
55,1 | ||
25,1 | ||
58,1 | ||
19,0 | ||
18,0 | ||
21,0 | ||
26,0 | ||
40,1 | ||
45,1 | ||
50,1 | ||
54,1 | ||
23,0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Implementation of Logisric regression" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from matplotlib import pyplot as plt\n", | ||
"%matplotlib inline\n", | ||
"df = pd.read_csv(\"Sample data for Logistic Regression.csv\")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from sklearn.model_selection import train_test_split\n", | ||
"X_train, X_test, y_train, y_test = train_test_split(df[[\"age\"]],df.bought_insurance,train_size=0.9)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div>\n", | ||
"<style scoped>\n", | ||
" .dataframe tbody tr th:only-of-type {\n", | ||
" vertical-align: middle;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe tbody tr th {\n", | ||
" vertical-align: top;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe thead th {\n", | ||
" text-align: right;\n", | ||
" }\n", | ||
"</style>\n", | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr style=\"text-align: right;\">\n", | ||
" <th></th>\n", | ||
" <th>age</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <th>10</th>\n", | ||
" <td>18</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>26</th>\n", | ||
" <td>23</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>8</th>\n", | ||
" <td>62</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"</div>" | ||
], | ||
"text/plain": [ | ||
" age\n", | ||
"10 18\n", | ||
"26 23\n", | ||
"8 62" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"X_test" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from sklearn.linear_model import LogisticRegression\n", | ||
"model = LogisticRegression()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"/Users/liuhongyang/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", | ||
" FutureWarning)\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", | ||
" intercept_scaling=1, l1_ratio=None, max_iter=100,\n", | ||
" multi_class='warn', n_jobs=None, penalty='l2',\n", | ||
" random_state=None, solver='warn', tol=0.0001, verbose=0,\n", | ||
" warm_start=False)" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"model.fit(X_train,y_train)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<matplotlib.collections.PathCollection at 0x1a185392b0>" | ||
] | ||
}, | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAOvUlEQVR4nO3df6zdd13H8eeLlonyq0IvZmkLHbHoGoSN3BTIjJZf0iFpEwOk1Rkkk8aEIUaUDDUTZ4wBEkHiRJeBKBFGnSLNrFYyt/kjbu7W8aut1UsZ9Fp0F9hmIoFZffvHOR2H23PvOffu3HvuPuf5SG7u+fw43+/7fnrP637yPffbm6pCkvTY97hxFyBJGg0DXZIaYaBLUiMMdElqhIEuSY3YOK4Tb968ubZv3z6u00vSY9KxY8e+UlVT/cbGFujbt29nZmZmXKeXpMekJF9cbMxLLpLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGDAz0JB9Mcn+Szy0yniTvSzKb5DNJXjD6Mhuze3fnQ+vPevq3WaqWlY6txvlGbT193St93pjWcpgd+oeAPUuMXwns6H4cBN7/6MuSJC3XwFv/q+pvk2xfYso+4I+q86eP7kqyKcnFVfXlEdXYjvM/le+889vbd9wxhmL0bdbTv81Stax0bDXON2rr6eteT3UuwyiuoW8BzvS057p9F0hyMMlMkpn5+fkRnFqSdF6G+Zui3R36rVX13D5jfwH8ZlX9fbd9G/C2qjq21DGnp6drYv9zLnfm69d6+rdZqpaVjq3G+UZtPX3dK33eKq5lkmNVNd1vbBQ79DlgW097K3B2BMeVJC3DKHboPwpcA7wKeCHwvqraNeiYE71Dl6QVWmqHPvBN0SQfBXYDm5PMAb8KPB6gqn4POEInzGeBrwNvGE3ZkqTlGOa3XA4MGC/gTSOrSJK0It4pKkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUiKECPcmeJKeSzCa5ts/4M5PcnuTeJJ9J8qrRlypJWsrAQE+yAbgBuBLYCRxIsnPBtF8BDlXV5cB+4HdHXagkaWnD7NB3AbNVdbqqHgZuBvYtmFPAU7qPnwqcHV2JkqRhDBPoW4AzPe25bl+vdwBXJZkDjgBv7negJAeTzCSZmZ+fX0G5kqTFDBPo6dNXC9oHgA9V1VbgVcCHk1xw7Kq6saqmq2p6ampq+dVKkhY1TKDPAdt62lu58JLK1cAhgKr6R+AJwOZRFChJGs4wgX4PsCPJJUkuovOm5+EFc74EvAwgyaV0At1rKpK0hgYGelWdA64BjgIn6fw2y/Ek1yfZ2532VuCNST4NfBT4qapaeFlGkrSKNg4zqaqO0Hmzs7fvup7HJ4ArRluaJGk5vFNUkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNWKoQE+yJ8mpJLNJrl1kzuuSnEhyPMlHRlumJGmQjYMmJNkA3AC8ApgD7klyuKpO9MzZAbwduKKqHkjyjNUqWJLU3zA79F3AbFWdrqqHgZuBfQvmvBG4oaoeAKiq+0dbpiRpkGECfQtwpqc91+3r9RzgOUn+IcldSfb0O1CSg0lmkszMz8+vrGJJUl/DBHr69NWC9kZgB7AbOADclGTTBU+qurGqpqtqempqarm1SpKWMEygzwHbetpbgbN95nyiqv6nqr4AnKIT8JKkNTJMoN8D7EhySZKLgP3A4QVz/hx4CUCSzXQuwZweZaGSpKUNDPSqOgdcAxwFTgKHqup4kuuT7O1OOwp8NckJ4HbgF6vqq6tVtCTpQqlaeDl8bUxPT9fMzMxYzi1Jj1VJjlXVdL8x7xSVpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWrEUIGeZE+SU0lmk1y7xLzXJKkk06MrUZI0jIGBnmQDcANwJbATOJBkZ595TwZ+Frh71EVKkgYbZoe+C5itqtNV9TBwM7Cvz7xfB94FfGOE9UmShjRMoG8BzvS057p9j0hyObCtqm5d6kBJDiaZSTIzPz+/7GIlSYsbJtDTp68eGUweB7wHeOugA1XVjVU1XVXTU1NTw1cpSRpomECfA7b1tLcCZ3vaTwaeC9yR5D7gRcBh3xiVpLU1TKDfA+xIckmSi4D9wOHzg1X1UFVtrqrtVbUduAvYW1Uzq1KxJKmvgYFeVeeAa4CjwEngUFUdT3J9kr2rXaAkaTgbh5lUVUeAIwv6rltk7u5HX5Ykabm8U1SSGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1YqhAT7Inyakks0mu7TP+80lOJPlMktuSPGv0pUqSljIw0JNsAG4ArgR2AgeS7Fww7V5guqqeB9wCvGvUhUqSljbMDn0XMFtVp6vqYeBmYF/vhKq6vaq+3m3eBWwdbZmSpEGGCfQtwJme9ly3bzFXA3/ZbyDJwSQzSWbm5+eHr1KSNNAwgZ4+fdV3YnIVMA28u994Vd1YVdNVNT01NTV8lZKkgTYOMWcO2NbT3gqcXTgpycuBXwZ+uKq+OZryJEnDGmaHfg+wI8klSS4C9gOHeyckuRz4fWBvVd0/+jIlSYMMDPSqOgdcAxwFTgKHqup4kuuT7O1OezfwJOBPknwqyeFFDidJWiXDXHKhqo4ARxb0Xdfz+OUjrkuStEzeKSpJjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1IihAj3JniSnkswmubbP+Hck+Vh3/O4k20dd6CM2bep89LN7d+djuZZ63krH1vp8i42ttEbp0VqN7z2/n5c0MNCTbABuAK4EdgIHkuxcMO1q4IGq+l7gPcA7R12oJGlpG4eYswuYrarTAEluBvYBJ3rm7APe0X18C/A7SVJVNbJKz+/KH3ro29sPPvitn9h33tn5fL59xx1LH3Op5610bK3Pt9jYecutUXq0Vvr6WOtjNmiYSy5bgDM97bluX985VXUOeAh4+sIDJTmYZCbJzPz8/MoqliT1lUGb6CSvBV5ZVT/dbf8ksKuq3twz53h3zly3/fnunK8udtzp6emamZlZfsW9O/OFVvpTe6nnrXRsrc+32Jg7GY3Lanzv+f1MkmNVNd1vbJgd+hywrae9FTi72JwkG4GnAl9bfqmSpJUaZoe+EfhX4GXAvwP3AD9eVcd75rwJ+IGq+pkk+4Efq6rXLXXcFe/QJWmCLbVDH/imaFWdS3INcBTYAHywqo4nuR6YqarDwAeADyeZpbMz3z+68iVJwxjmt1yoqiPAkQV91/U8/gbw2tGWJklaDu8UlaRGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQPvFF21EyfzwBfX+LSbga+s8TnXO9fkQq5Jf67LhcaxJs+qqql+A2ML9HFIMrPYLbOTyjW5kGvSn+tyofW2Jl5ykaRGGOiS1IhJC/Qbx13AOuSaXMg16c91udC6WpOJuoYuSS2btB26JDXLQJekRjQb6Em2Jbk9yckkx5O8pdv/tCSfTPJv3c/fPe5a10qSJyT5pySf7q7Jr3X7L0lyd3dNPpbkonHXutaSbEhyb5Jbu+2JXpMk9yX5bJJPJZnp9k3sawcgyaYktyT5l26uvHi9rUmzgQ6cA95aVZcCLwLelGQncC1wW1XtAG7rtifFN4GXVtXzgcuAPUleBLwTeE93TR4Arh5jjePyFuBkT9s1gZdU1WU9v2c9ya8dgN8G/qqqvh94Pp3vl/W1JlU1ER/AJ4BXAKeAi7t9FwOnxl3bmNbju4B/Bl5I5063jd3+FwNHx13fGq/FVjovxpcCtwJxTbgP2Lygb2JfO8BTgC/Q/UWS9bomLe/QH5FkO3A5cDfwPVX1ZYDu52eMr7K117208CngfuCTwOeBB6vqXHfKHLBlXPWNyXuBtwH/120/HdekgL9OcizJwW7fJL92ng3MA3/QvTR3U5Inss7WpPlAT/Ik4E+Bn6uq/xp3PeNWVf9bVZfR2ZXuAi7tN21tqxqfJK8G7q+qY73dfaZOzJp0XVFVLwCupHO58ofGXdCYbQReALy/qi4H/ptxX17po+lAT/J4OmH+x1X1Z93u/0xycXf8Yjo71YlTVQ8Cd9B5f2FTkvN/MHwrcHZcdY3BFcDeJPcBN9O57PJeJntNqKqz3c/3Ax+n88N/kl87c8BcVd3dbd9CJ+DX1Zo0G+hJAnwAOFlVv9UzdBh4fffx6+lcW58ISaaSbOo+/k7g5XTe2LkdeE132kStSVW9vaq2VtV2YD/wN1X1E0zwmiR5YpInn38M/AjwOSb4tVNV/wGcSfJ93a6XASdYZ2vS7J2iSX4Q+Dvgs3zr2ugv0bmOfgh4JvAl4LVV9bWxFLnGkjwP+ENgA50f5oeq6vokz6azO30acC9wVVV9c3yVjkeS3cAvVNWrJ3lNul/7x7vNjcBHquo3kjydCX3tACS5DLgJuAg4DbyB7uuIdbImzQa6JE2aZi+5SNKkMdAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI/4fgthcsI7watoAAAAASUVORK5CYII=\n", | ||
"text/plain": [ | ||
"<Figure size 432x288 with 1 Axes>" | ||
] | ||
}, | ||
"metadata": { | ||
"needs_background": "light" | ||
}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"plt.scatter(df.age,df.bought_insurance,marker=\"+\",color=\"red\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"y_predicted = model.predict(X_test)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([[0.65452175, 0.34547825],\n", | ||
" [0.59563116, 0.40436884],\n", | ||
" [0.17138869, 0.82861131]])" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"model.predict_proba(X_test)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"1.0" | ||
] | ||
}, | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"model.score(X_test,y_test)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |