Clone the repository,
git clone https://github.com/IntellisenseLab/FabVis-Models.git
Download pretrained weight files from here or trained weight files from here and extract them and move the each folder into the repo folder.
Evaluating the effect of resolution on the performance of the model
Model | Reso lution | Batch | Sub divisions | Pre trained | Precision | Recall | F1 score | mAP @0.5 | Avg IoU | Output |
---|---|---|---|---|---|---|---|---|---|---|
Tiny | 640 | 64 | 16 | Yes | 0.33 | 0.07 | 0.12 | 0.1400 | 0.2219 | terminal |
Tiny | 416 | 64 | 16 | Yes | 0.36 | 0.10 | 0.16 | 0.1821 | 0.2474 | terminal |
Tiny | 320 | 64 | 16 | Yes | 0.45 | 0.14 | 0.22 | 0.1781 | 0.3002 | terminal |
Tiny | 256 | 64 | 16 | Yes | 0.33 | 0.09 | 0.15 | 0.1839 | 0.2221 | terminal |
Evaluating the effect of resolution on the performance of the model
Model | Reso lution | Batch | Sub divisions | Pre trained | Precision | Recall | F1 score | mAP @0.5 | Avg IoU | Output |
---|---|---|---|---|---|---|---|---|---|---|
Tiny | 640 | 64 | 16 | Yes | 0.33 | 0.07 | 0.12 | 0.1400 | 0.2219 | terminal |
Tiny | 640 | 64 | 16 | No | 0.43 | 0.10 | 0.17 | 0.1194 | 0.2881 | terminal |
Tiny | 416 | 64 | 16 | Yes | 0.36 | 0.10 | 0.16 | 0.1821 | 0.2474 | terminal |
Tiny | 416 | 64 | 16 | No | 0.45 | 0.10 | 0.16 | 0.1918 | 0.2978 | terminal |
Tiny | 320 | 64 | 16 | Yes | 0.45 | 0.14 | 0.22 | 0.1781 | 0.3002 | terminal |
Tiny | 320 | 64 | 16 | No | 0.43 | 0.12 | 0.18 | 0.1684 | 0.2948 | terminal |
Tiny | 256 | 64 | 16 | Yes | 0.33 | 0.09 | 0.15 | 0.1839 | 0.2221 | terminal |
Tiny | 256 | 64 | 16 | No | 0.33 | 0.10 | 0.15 | 0.1512 | 0.2194 | terminal |
All the values range between 0 - 1
Model | Reso lution | Batch | Sub divisions | Pre trained | Precision | Recall | F1 score | mAP @0.5 | Avg IoU | Output |
---|---|---|---|---|---|---|---|---|---|---|
yolov4-tiny | 416 | 16 | 8 | Yes | 0.21 | 0.08 | 0.11 | 0.1080 | 0.1422 | terminal |
yolov4-tiny | 640 | 16 | 8 | Yes | 0.35 | 0.09 | 0.14 | 0.1512 | 0.2455 | terminal |
yolov4 | 416 | 16 | 8 | Yes | 0.62 | 0.33 | 0.43 | 0.1846 | 0.4690 | terminal |
yolov4 | 640 | 16 | 8 | Yes | 0.73 | 0.44 | 0.55 | 0.2617 | 0.5446 | terminal |
yolov4x-mish | 416 | 16 | 8 | Yes | 0.65 | 0.34 | 0.44 | 0.2312 | 0.4881 | terminal |
yolov4x-mish | 640 | 16 | 8 | Yes | 0.72 | 0.41 | 0.53 | 0.2178 | 0.5433 | terminal |
yolov4-csp | 416 | 16 | 8 | Yes | 0.77 | 0.36 | 0.49 | 0.2328 | 0.5720 | terminal |
yolov4-csp | 640 | 16 | 8 | Yes | 0.69 | 0.44 | 0.53 | 0.2070 | 0.5164 | terminal |
yolov4-csp-swish | 416 | 16 | 8 | Yes | 0.68 | 0.33 | 0.44 | 0.1546 | 0.5771 | terminal |
yolov4-csp-swish | 640 | 16 | 8 | Yes | 0.68 | 0.45 | 0.54 | 0.1464 | 0.5052 | terminal |
yolov4-csp-x-swish | 416 | 16 | 8 | Yes | 0.68 | 0.33 | 0.45 | 0.0955 | 0.5172 | terminal |
yolov4-csp-x-swish | 640 | 16 | 8 | Yes | 0.71 | 0.43 | 0.54 | 0.1798 | 0.5329 | terminal |
yolov4-p5 | 896 | 16 | 8 | Yes | 0.68 | 0.41 | 0.51 | 0.3619 | 0.5559 | terminal |
yolov4-p6 | 1280 | 16 | 16 | Yes | 0.60 | 0.43 | 0.50 | 0.3642 | 0.4763 | terminal |
All the values range between 0 - 1 Used Model is yolov4-tiny, and resolution is 416x416
Minibatch | Batch | Sub divisions | Pre trained | Precision | Recall | F1 score | mAP @0.5 | Avg IoU | Output |
---|---|---|---|---|---|---|---|---|---|
2 | 16 | 8 | Yes | 0.21 | 0.08 | 0.11 | 0.1080 | 0.1422 | terminal |
4 | 64 | 16 | Yes | 0.36 | 0.10 | 0.16 | 0.1821 | 0.2474 | terminal |
8 | 64 | 8 | Yes | 0.34 | 0.11 | 0.16 | 0.1789 | 0.2176 | terminal |
4 | 128 | 32 | Yes | 0.30 | 0.10 | 0.15 | 0.1372 | 0.2079 | terminal |
8 | 128 | 16 | Yes | 0.36 | 0.11 | 0.17 | 0.1901 | 0.2387 | terminal |
16 | 128 | 8 | Yes | 0.29 | 0.09 | 0.14 | 0.1900 | 0.2015 | terminal |
4 | 256 | 64 | Yes | 0.35 | 0.12 | 0.18 | 0.1256 | 0.2395 | terminal |
8 | 256 | 32 | Yes | 0.30 | 0.11 | 0.16 | 0.1725 | 0.2068 | terminal |
16 | 256 | 16 | Yes | 0.31 | 0.09 | 0.14 | 0.1210 | 0.2170 | terminal |
32 | 256 | 8 | Yes | 0.32 | 0.10 | 0.16 | 0.1864 | 0.2205 | terminal |
- RAM Memory usage - ~1.8 GB
- GPU Memory usage - ~3.5 GB
- CPU count (used) - 1
- RAM Memory usage - ~2.2 GB
- GPU Memory usage - ~6.1 GB
- CPU count (used) - 1
Following commands will enable the training of models in coorindation of Preprocess system
./darknet detector train ../config/obj.data ../FabVis-Models/config/yolov4-tiny.cfg ../FabVis-Models/preTrainedWeights/yolov4-tiny.conv.29 -dont_show -mjpeg_port 8090 -map
./darknet detector train ../config/obj.data ../FabVis-Models/config/yolov4.cfg ../FabVis-Models/preTrainedWeights/yolov4.conv.137 -dont_show -mjpeg_port 8090 -map
./darknet detector train ../config/obj.data ../FabVis-Models/config/yolov4x-mish.cfg ../FabVis-Models/preTrainedWeights/yolov4x-mish.conv.166 -dont_show -mjpeg_port 8090 -map
./darknet detector train ../config/obj.data ../FabVis-Models/config/yolov4-csp-swish.cfg ../FabVis-Models/preTrainedWeights/yolov4-csp-swish.conv.164 -dont_show -mjpeg_port 8090 -map
./darknet detector train ../config/obj.data ../FabVis-Models/config/yolov4-csp-x-swish.cfg ../FabVis-Models/preTrainedWeights/yolov4-csp-x-swish.conv.192 -dont_show -mjpeg_port 8090 -map
./darknet detector train ../config/obj.data ../FabVis-Models/config/yolov4-csp.cfg ../FabVis-Models/preTrainedWeights/yolov4-csp.conv.142 -dont_show -mjpeg_port 8090 -map
./darknet detector train ../config/obj.data ../FabVis-Models/config/yolov4-p5.cfg ../FabVis-Models/preTrainedWeights/yolov4-p5.conv.232 -dont_show -mjpeg_port 8090 -map
./darknet detector train ../config/obj.data ../FabVis-Models/config/yolov4-p6.cfg ../FabVis-Models/preTrainedWeights/yolov4-p6.conv.289 -dont_show -mjpeg_port 8090 -map