-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathantMain.py
298 lines (275 loc) · 9.76 KB
/
antMain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import random
import copy
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MultipleLocator
def functionG2D(G):
l = len(G[0])
D = np.zeros((l, l, l, l))
for i in range(l):
for j in range(l):
if(G[i][j] == 0):
for m in range(l):
for n in range(l):
if(G[m][n] == 0):
im = abs(i - m)
jn = abs(j - n)
if im + jn == 1 or (im == 1 and jn == 1):
D[i][j][m][n] = np.sqrt(im + jn)
return D
def main():
# figure1: 绘制最优路径更新情况
# figure2: 绘制蚂蚁最优路径
# figure3: 绘制每次迭代中的蚂蚁最优路径
figure1 = 1
figure2 = 1
figure3 = 1
# G 地形图为01矩阵,1表示障碍物
G = [[0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],]
G = list(zip(*G[::-1]))
MM = len(G[0])
# Tau 初始化信息素矩阵
Tau = np.ones((MM, MM, MM, MM))
Tau = 8.0 * Tau
# 迭代次数(蚂蚁出动多少波)
K = 100
# 蚂蚁个数
M = 50
# 最短路径起始点
S = [0, MM-1]
# 最短路径目的点
E = [MM-1, 0]
# Alpha 表征信息素重要程度的参数
Alpha = 1
# Beta 表征启发式因子重要程度的参数
Beta = 7
# Rho 信息素蒸发系数
Rho = 0.3
# Q 信息素增加强度系数
Q = 1
mink = 0
minl = 0
minkl = float("inf")
D = functionG2D(G)
# N 问题的规模(像素个数)
N = len(D[0])
# 小方格像素的边长
a = 1
# 起始点横纵坐标
Sx = S[0] + 0.5
Sy = S[1] + 0.5
# 终止点横坐标
Ex = E[0] + 0.5
# 终止点纵坐标
Ey = E[1] + 0.5
# 启发式信息,取为至目标点的直线距离的倒数
Eta = np.zeros((MM, MM))
# 以下启发式信息矩阵
for i in range(MM):
for j in range(MM):
ix = i + 0.5
iy = j + 0.5
if ix != Ex or iy != Ey:
Eta[i][j] = 1.0 / np.sqrt(np.square(ix - Ex) + np.square(iy - Ey))
else:
Eta[i][j] = 100
ROUTES = []
for i in range(K):
tmp = []
for j in range(M):
tmp.append([])
ROUTES.append(tmp)
PL = np.zeros((K, M))
for k in range(K):
print("round:" + str(k))
for m in range(M):
W = S
Path = [S]
PLkm = 0
TABUkm = np.ones((MM, MM))
TABUkm[S[0]][S[1]] = 0
DD = copy.deepcopy(D)
#下一步可以前往的结点
DW = DD[W[0]][W[1]]
DW1 = np.nonzero(DW)
for j in range(len(DW1[0])):
if TABUkm[DW1[0][j]][DW1[1][j]] == 0:
DW[DW1[0][j]][DW1[1][j]] = 0
LJD = np.nonzero(DW)
LenLJD = len(LJD[0])
# 蚂蚁遇到食物或者陷入死胡同则觅食停止
while W != E and LenLJD >= 1:
PP = np.zeros(LenLJD)
for i in range(LenLJD):
PP[i] = (Tau[W[0]][W[1]][LJD[0][i]][LJD[1][i]] ** Alpha) * (Eta[LJD[0][i]][LJD[1][i]] ** Beta)
sumpp = PP.sum()
PP = PP / sumpp
Pcum = np.zeros(LenLJD)
Pcum[0] = PP[0]
for i in range(1, LenLJD):
Pcum[i] = Pcum[i-1] + PP[i]
Select = -1
p = random.random()
for i in range(len(Pcum)):
if Pcum[i] >= p:
Select = i
break
to_visit = [LJD[0][Select], LJD[1][Select]]
Path.append(to_visit)
PLkm += DD[W[0]][W[1]][to_visit[0]][to_visit[1]]
W = to_visit
for kk in range(N):
for kkk in range(N):
if TABUkm[kk][kkk] == 0:
DD[W[0]][W[1]][kk][kkk] = 0
DD[kk][kkk][W[0]][W[1]] = 0
TABUkm[W[0]][W[1]] = 0
DW = DD[W[0]][W[1]]
DW1 = np.nonzero(DW)
for j in range(len(DW1[0])):
if TABUkm[DW1[0][j]][DW1[1][j]] == 0:
DW[DW1[0][j]][DW1[1][j]] = 0
LJD = np.nonzero(DW)
LenLJD = len(LJD[0])
ROUTES[k][m] = Path
if Path[-1] == E:
PL[k][m] = PLkm
if PLkm < minkl:
mink = k
minl = m
minkl = PLkm
else:
PL[k][m] = 0
Delta_Tau = np.zeros((N, N, N, N))
for m in range(M):
if PL[k][m]:
ROUT = ROUTES[k][m]
TS = len(ROUT) - 1
PL_km = PL[k][m]
for s in range(TS):
x = ROUT[s]
y = ROUT[s + 1]
Delta_Tau[x[0]][x[1]][y[0]][y[1]] = Delta_Tau[x[0]][x[1]][y[0]][y[1]] + Q / PL_km
Delta_Tau[y[0]][y[1]][x[0]][x[1]] = Delta_Tau[y[0]][y[1]][x[0]][x[1]] + Q / PL_km
Tau = (1.0 - Rho) * Tau + Delta_Tau
if figure1 == 1:
minPL = []
for i in range(K):
PLK = PL[i]
notZero = np.nonzero(PLK)
if len(notZero) == 0:
continue
PLKPLK = []
for j in range(len(notZero[0])):
PLKPLK.append(PLK[notZero[0][j]])
if len(PLKPLK) == 0:
continue
minPL.append(min(PLKPLK))
plt.figure(figsize=(5, 5))
plt.grid(True)
# x_major_locator = MultipleLocator(1)
# y_major_locator = MultipleLocator(1)
# ax = plt.gca()
# ax.xaxis.set_major_locator(x_major_locator)
# ax.yaxis.set_major_locator(y_major_locator)
plt.plot(minPL)
# 绘制蚂蚁爬行路径
if figure2 == 1:
plt.figure(figsize=(5, 5))
plt.grid(True)
x_major_locator = MultipleLocator(1)
y_major_locator = MultipleLocator(1)
ax = plt.gca()
ax.xaxis.set_major_locator(x_major_locator)
ax.yaxis.set_major_locator(y_major_locator)
plt.xlim(0, 20)
plt.ylim(0, 20)
for i in range(MM):
for j in range(MM):
x1 = i
y1 = j
x2 = i
y2 = j + 1
x3 = i + 1
y3 = j + 1
x4 = i + 1
y4 = j
if G[i][j] == 1:
plt.fill([x1, x2, x3, x4], [y1, y2, y3, y4], "gray")
else:
plt.fill([x1, x2, x3, x4], [y1, y2, y3, y4], "white")
ROUT = ROUTES[mink][minl]
LENROUT = len(ROUT)
Rx = []
Ry = []
for ii in range(LENROUT):
Rx.append(ROUT[ii][0] + 0.5)
Ry.append(ROUT[ii][1] + 0.5)
plt.plot(Rx, Ry)
# 绘制各代蚂蚁的爬行图
if figure3 == 1:
plt.figure(figsize=(5, 5))
plt.grid(True)
x_major_locator = MultipleLocator(1)
y_major_locator = MultipleLocator(1)
ax = plt.gca()
ax.xaxis.set_major_locator(x_major_locator)
ax.yaxis.set_major_locator(y_major_locator)
plt.xlim(0, 20)
plt.ylim(0, 20)
for i in range(MM):
for j in range(MM):
x1 = i
y1 = j
x2 = i
y2 = j + 1
x3 = i + 1
y3 = j + 1
x4 = i + 1
y4 = j
if G[i][j] == 1:
plt.fill([x1, x2, x3, x4], [y1, y2, y3, y4], "gray")
else:
plt.fill([x1, x2, x3, x4], [y1, y2, y3, y4], "white")
for k in range(K):
PLK = PL[k]
choose = 0
notZero = np.nonzero(PLK)
if len(notZero[0]) != 0:
minklTmp = float('inf')
for kk in notZero[0]:
if PLK[kk] < minklTmp:
minklTmp = PLK[kk]
choose = kk
else:
continue
ROUT = ROUTES[k][choose]
LENROUT = len(ROUT)
Rx = []
Ry = []
for ii in range(LENROUT):
Rx.append(ROUT[ii][0] + 0.5)
Ry.append(ROUT[ii][1] + 0.5)
plt.plot(Rx, Ry)
if figure1 + figure2 + figure3 >= 1:
plt.show()
main()