-
Notifications
You must be signed in to change notification settings - Fork 3.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
200 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.utils.data import DataLoader | ||
from torch.distributed._composable.fsdp.fully_shard import fully_shard | ||
from torch.distributed.device_mesh import DeviceMesh | ||
|
||
from torchao.float8 import convert_to_float8_training, Float8LinearConfig | ||
|
||
import lightning as L | ||
from lightning.fabric.strategies import ModelParallelStrategy | ||
from lightning.pytorch.demos import Transformer, WikiText2 | ||
|
||
from tqdm import tqdm | ||
|
||
|
||
def configure_model(model: nn.Module, device_mesh: DeviceMesh) -> nn.Module: | ||
float8_config = Float8LinearConfig( | ||
# pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly | ||
pad_inner_dim=True, | ||
) | ||
|
||
def module_filter_fn(mod: torch.nn.Module, fqn: str): | ||
# we skip the decoder because it typically vocabulary size | ||
# is not divisible by 16 as required by float8 | ||
if fqn == "decoder": | ||
return False | ||
return True | ||
|
||
convert_to_float8_training(model, config=float8_config, module_filter_fn=module_filter_fn) | ||
|
||
for module in model.modules(): | ||
if isinstance(module, (torch.nn.TransformerEncoderLayer, torch.nn.TransformerDecoderLayer)): | ||
fully_shard(module, mesh=device_mesh) | ||
|
||
fully_shard(model, mesh=device_mesh) | ||
|
||
model = torch.compile(model) | ||
|
||
return model | ||
|
||
|
||
def train(): | ||
L.seed_everything(42) | ||
|
||
batch_size = 8 | ||
micro_batch_size = 1 | ||
|
||
dataset = WikiText2() | ||
dataloader = DataLoader(dataset, num_workers=8, batch_size=micro_batch_size) | ||
|
||
with torch.device("meta"): | ||
model = Transformer( | ||
vocab_size=dataset.vocab_size, | ||
nlayers=16, | ||
nhid=4096, | ||
ninp=1024, | ||
nhead=32, | ||
) | ||
|
||
strategy = ModelParallelStrategy( | ||
data_parallel_size=4, | ||
tensor_parallel_size=1, | ||
parallelize_fn=configure_model | ||
) | ||
|
||
fabric = L.Fabric(precision="bf16-true", strategy=strategy) | ||
fabric.launch() | ||
|
||
model = fabric.setup(model) | ||
|
||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) | ||
optimizer = fabric.setup_optimizers(optimizer) | ||
|
||
dataloader = fabric.setup_dataloaders(dataloader) | ||
|
||
iterable = tqdm(enumerate(dataloader), total=len(dataloader)) if fabric.is_global_zero else enumerate(dataloader) | ||
|
||
for i, batch in iterable: | ||
input, target = batch | ||
|
||
is_accumulating = i % (batch_size // micro_batch_size) != 0 | ||
|
||
with fabric.no_backward_sync(model, enabled=is_accumulating): | ||
output = model(input, target) | ||
loss = F.nll_loss(output, target.view(-1)) | ||
fabric.backward(loss) | ||
|
||
if not is_accumulating: | ||
fabric.clip_gradients(model, optimizer, max_norm=1.0) | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
|
||
if fabric.is_global_zero: | ||
iterable.set_postfix_str(f"train_loss={loss.item():.2f}") | ||
|
||
if i // (batch_size // micro_batch_size) > 100: | ||
break | ||
|
||
fabric.print(torch.cuda.memory_summary()) | ||
|
||
|
||
if __name__ == "__main__": | ||
torch.set_float32_matmul_precision('high') | ||
|
||
train() |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.utils.data import DataLoader | ||
from torch.distributed._composable.fsdp.fully_shard import fully_shard | ||
|
||
from torchao.float8 import convert_to_float8_training, Float8LinearConfig | ||
|
||
import lightning as L | ||
from lightning.pytorch.strategies import ModelParallelStrategy | ||
from lightning.pytorch.demos import Transformer, WikiText2 | ||
|
||
|
||
class LanguageModel(L.LightningModule): | ||
def __init__(self, vocab_size): | ||
super().__init__() | ||
self.vocab_size = vocab_size | ||
self.model = None | ||
|
||
def configure_model(self): | ||
if self.model is not None: | ||
return | ||
|
||
with torch.device("meta"): | ||
model = Transformer( | ||
vocab_size=self.vocab_size, | ||
nlayers=16, | ||
nhid=4096, | ||
ninp=1024, | ||
nhead=32, | ||
) | ||
|
||
float8_config = Float8LinearConfig( | ||
# pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly | ||
pad_inner_dim=True, | ||
) | ||
|
||
def module_filter_fn(mod: torch.nn.Module, fqn: str): | ||
# we skip the decoder because it typically vocabulary size | ||
# is not divisible by 16 as required by float8 | ||
if fqn == "decoder": | ||
return False | ||
return True | ||
|
||
convert_to_float8_training(model, config=float8_config, module_filter_fn=module_filter_fn) | ||
|
||
for module in model.modules(): | ||
if isinstance(module, (nn.TransformerEncoderLayer, nn.TransformerDecoderLayer)): | ||
fully_shard(module, mesh=self.device_mesh) | ||
|
||
fully_shard(model, mesh=self.device_mesh) | ||
|
||
self.model = torch.compile(model) | ||
|
||
def training_step(self, batch): | ||
input, target = batch | ||
output = self.model(input, target) | ||
loss = F.nll_loss(output, target.view(-1)) | ||
self.log("train_loss", loss, prog_bar=True) | ||
return loss | ||
|
||
def configure_optimizers(self): | ||
return torch.optim.Adam(self.parameters(), lr=1e-4) | ||
|
||
|
||
def train(): | ||
L.seed_everything(42) | ||
|
||
dataset = WikiText2() | ||
train_dataloader = DataLoader(dataset, num_workers=8, batch_size=1) | ||
|
||
model = LanguageModel(vocab_size=dataset.vocab_size) | ||
|
||
mp_strategy = ModelParallelStrategy( | ||
data_parallel_size=4, | ||
tensor_parallel_size=1, | ||
) | ||
|
||
trainer = L.Trainer( | ||
strategy=mp_strategy, | ||
max_steps=100, | ||
precision="bf16-true", | ||
accumulate_grad_batches=8 | ||
) | ||
|
||
trainer.fit(model, train_dataloader) | ||
|
||
trainer.print(torch.cuda.memory_summary()) | ||
|
||
|
||
if __name__ == "__main__": | ||
torch.set_float32_matmul_precision('high') | ||
|
||
train() |