-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
336 lines (262 loc) · 15.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import warnings
import torch
import torch.nn.functional as F
import torch.optim as optim
import dataset.open_world_cifar as datasets
from utils import cluster_acc, AverageMeter, accuracy, Logger, TransformTwice, setup_seed, proto_graph, graph_cluster, reknn_graph
from sklearn import metrics
import numpy as np
import os
import sys
from itertools import cycle
from models.model import Model
import time
from scipy.optimize import linear_sum_assignment
def train(args, model, device, train_label_loader, train_unlabel_loader, optimizer, epoch):
model.train()
unlabel_loader_iter = cycle(train_unlabel_loader)
ent_losses = AverageMeter('ent_loss', ':.4e')
cls_losses = AverageMeter('cls_loss', ':.4e')
group_losses = AverageMeter('group_loss', ':.4e')
proto_losses = AverageMeter('proto_loss', ':.4e')
for batch_idx, ((x_l, x_l2), y_l) in enumerate(train_label_loader):
((x_u, x_u2), y_u) = next(unlabel_loader_iter)
x_l, y_l, x_u, y_u = x_l.to(device), y_l.to(device), x_u.to(device), y_u.to(device)
x_l2, x_u2 = x_l2.to(device), x_u2.to(device)
loss_dic = model.loss(x_l, x_l2, y_l, x_u, x_u2)
loss = loss_dic['proto'] + loss_dic['group'] + args.reg[0] * loss_dic['ent'] + args.reg[1] * loss_dic['cls']
proto_losses.update(loss_dic['proto'].item(), args.batch_size)
group_losses.update(loss_dic['group'].item(), args.batch_size)
cls_losses.update(args.reg[1] * loss_dic['cls'].item(), args.batch_size)
ent_losses.update(args.reg[0] * loss_dic['ent'].item(), args.batch_size)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train loss = protosim({:.3f}) + groupsim({:.3f}) + cls({:.3f}) + ent({:.3f})'.format(proto_losses.avg, group_losses.avg, cls_losses.avg, ent_losses.avg))
def val(args, model, device, train_label_loader, train_unlabel_loader, epoch, n_cls, old_graph):
model.eval()
features_l = []
features_u = []
targets_l = []
targets_u = []
unlabel_loader_iter = cycle(train_unlabel_loader)
with torch.no_grad():
for batch_idx, ((x_l, _), y_l) in enumerate(train_label_loader):
((x_u, _), y_u) = next(unlabel_loader_iter)
x_l, y_l, x_u, y_u = x_l.to(device), y_l.to(device), x_u.to(device), y_u.to(device)
feature_l = model.encoder(x_l)
feature_u = model.encoder(x_u)
features_l.append(feature_l)
features_u.append(feature_u)
targets_l.append(y_l)
targets_u.append(y_u)
targets_u = torch.hstack(targets_u)
features_l = torch.vstack(features_l)
features_u = torch.vstack(features_u)
targets_l = torch.hstack(targets_l)
features = torch.cat((features_l,features_u),0)
targets = torch.cat((targets_l,targets_u),0)
prototypes = model.prototypes[model.proto_ind]
prototypes = F.normalize(prototypes, dim=1)
features = F.normalize(features, dim=1)
features_l = F.normalize(features_l, dim=1)
features_u = F.normalize(features_u, dim=1)
dist_matrix = torch.mm(features, prototypes.t())
edge_graph = proto_graph(dist_matrix, args.nn)
ind = edge_graph.diagonal() >= args.min_count
edge_graph = edge_graph[ind,:][:,ind]
dist_matrix = dist_matrix[:,ind]
proto_ind = model.proto_ind.clone()
proto_ind[proto_ind==True] = ind
prototypes = prototypes[ind]
seed = 0
edge_graph = reknn_graph(dist_matrix, args.nn, mode='min')
targets_l = targets_l.cpu().numpy()
def group_discovery(edge_graph, prototypes, args, targets_l, eps=0, n_cls=10):
proto_label, proto_mask = graph_cluster(edge_graph, prototypes, lamda=args.lamda_graph, method=args.group_method, seed=seed, n_cls=n_cls, eps=eps)
group_label, group_index = np.unique(proto_label, return_index=True)
group_mask = proto_mask[group_index]
# match y_l to proto group label
preds_proto = np.argmax(dist_matrix.cpu().numpy(),1)
preds_group = proto_label[preds_proto]
preds_group_l = preds_group[:len(features_l)]
contingency_matrix = metrics.cluster.contingency_matrix(targets_l, preds_group_l)
target_ind, group_label_new_l = linear_sum_assignment(contingency_matrix.max() - contingency_matrix)
group_label_new = np.r_[group_label[group_label_new_l], np.delete(group_label, group_label_new_l, axis=0)]
group_mask_new = group_mask[group_label_new]
mp = group_label.copy()
mp[group_label_new] = group_label
pred_ordered = mp[preds_group_l]
acc = accuracy(pred_ordered, targets_l)
return acc, preds_proto, proto_mask, group_mask, group_mask_new
acc_best = 0
n_cls_best = n_cls
proto_mask_best, group_mask_new_best = None, None
if args.unknown_n_cls:
if args.group_method in ['propagation', 'connected'] and args.dataset=='cifar10':
eps_min = 0.5
eps_max = 0.99
elif args.group_method in ['louvain'] and args.dataset=='cifar10':
eps_min = 2 # 0.5
eps_max = 12
elif args.group_method in ['louvain'] and args.dataset=='cifar100':
eps_min = 6
eps_max = 12
else:
raise Exception("Invalid clustering method. ['propagation', 'connected', 'louvain'] for cifar10, ['louvain'] for cifar100.")
grouping_epochs = args.fix_epoch - args.warm_epoch
eps_array = [((eps_min/eps_max)**((i) / (grouping_epochs-1)))*eps_max for i in range(grouping_epochs)]
for eps_t in eps_array[:(epoch-args.warm_epoch+1)]:
acc, _, proto_mask, _, group_mask_new = group_discovery(edge_graph, prototypes, args, targets_l, eps_t)
print('EPS:{:.2f}, NUM:{:d}, ACC:{:.4f}'.format(eps_t, group_mask_new.shape[0], acc))
if acc > acc_best:
acc_best = acc
n_cls_best = group_mask_new.shape[0]
proto_mask_best = proto_mask
group_mask_new_best = group_mask_new
print('** Best Group_num {} **'.format(n_cls_best))
else:
acc_best, _, proto_mask_best, _, group_mask_new_best = group_discovery(edge_graph, prototypes, args, targets_l, n_cls=n_cls)
return edge_graph, proto_mask_best, group_mask_new_best, proto_ind, acc_best
def test(args, model, labeled_num, device, test_loader, epoch):
model.eval()
preds = np.array([])
features = []
targets = np.array([])
confs = np.array([])
with torch.no_grad():
for batch_idx, (x, label) in enumerate(test_loader):
x, label = x.to(device), label.to(device)
pred, conf, feature = model.pred(x)
features.append(feature)
targets = np.append(targets, label.cpu().numpy())
preds = np.append(preds, pred.cpu().numpy())
confs = np.append(confs, conf.cpu().numpy())
features = torch.cat(features, 0)
targets = targets.astype(int)
preds = preds.astype(int)
features = features.cpu().numpy()
known_mask = targets < labeled_num
unknown_mask = ~known_mask
all_acc = cluster_acc(preds, targets)
known_acc = accuracy(preds[known_mask], targets[known_mask])
unknown_acc = cluster_acc(preds[unknown_mask], targets[unknown_mask])
print('Test All ACC {:.4f}, Known ACC {:.4f}, Unknown ACC {:.4f}'.format(all_acc, known_acc, unknown_acc))
def main():
parser = argparse.ArgumentParser(description='OpenNCD')
parser.add_argument('--milestones', nargs='+', type=int, default=[90, 120])
parser.add_argument('--dataset', default='cifar10', help='dataset')
parser.add_argument('--backbone', default='resnet18', help='backbone setting')
parser.add_argument('--labeled_num', default=5, type=int)
parser.add_argument('--labeled_ratio', default=0.1, type=float)
parser.add_argument('--seed', type=int, default=2023, help='random seed')
parser.add_argument('--name', type=str, default='')
parser.add_argument('--exp_root', type=str, default='./results/')
parser.add_argument('--epochs', type=int, default=150)
parser.add_argument('-b', '--batch_size', default=512, type=int, help='batch size')
parser.add_argument('--lamda', default=1, type=float)
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--ldim', default=32, type=int)
parser.add_argument('--nn', default=3, type=int)
parser.add_argument('--lamda_graph', default=1, type=float)
parser.add_argument('--tau', default=0.1, type=float)
parser.add_argument('--min_count', default=0, type=int)
parser.add_argument('--reg', type=float, nargs='+', default=[1, 1], help='loss weights')
parser.add_argument('--init', default=False, action='store_true')
parser.add_argument('--lr', default=2e-3, type=float, help='learning rate of backbone')
parser.add_argument('--lr_proto', default=2e-3, type=float, help='learning rate of prototypes')
parser.add_argument('--n_proto', default=50, type=int, help='number of prototypes')
parser.add_argument('--eps', default=0.7, type=float, help='grouping threshold')
parser.add_argument('--warm_epoch', default=5, type=float, help='warm up epoch')
parser.add_argument('--fix_epoch', default=70, type=float, help='grouping epoch')
parser.add_argument('--group_method', default='spectral', help='[louvain/connected/propagation] if unknown_n_cls')
parser.add_argument('--unknown_n_cls', action='store_true', help='action if n_classes is unknown')
parser.add_argument('--save_log', action='store_true', help='action to save output')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = '%s' %args.gpu
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Current Device:', device)
setup_seed(args.seed)
args.time_stamp = time.strftime("%y%m%d_%H%M%S", time.localtime())
print('Current Time: ', args.time_stamp)
print(args)
root = '../data'
if args.dataset == 'cifar10':
train_label_set = datasets.OPENWORLDCIFAR10(root=root, labeled=True, labeled_num=args.labeled_num, labeled_ratio=args.labeled_ratio, download=True, transform=TransformTwice(datasets.dict_transform['cifar10_train']))
train_unlabel_set = datasets.OPENWORLDCIFAR10(root=root, labeled=False, labeled_num=args.labeled_num, labeled_ratio=args.labeled_ratio, download=True, transform=TransformTwice(datasets.dict_transform['cifar10_train']), unlabeled_idxs=train_label_set.unlabeled_idxs)
test_set = datasets.OPENWORLDCIFAR10(root=root, labeled=False, labeled_num=args.labeled_num, labeled_ratio=args.labeled_ratio, download=True, transform=datasets.dict_transform['cifar10_test'], unlabeled_idxs=train_label_set.unlabeled_idxs)
n_classes = 10
elif args.dataset == 'cifar100':
args.labeled_num = 50
train_label_set = datasets.OPENWORLDCIFAR100(root=root, labeled=True, labeled_num=args.labeled_num, labeled_ratio=args.labeled_ratio, download=True, transform=TransformTwice(datasets.dict_transform['cifar100_train']))
train_unlabel_set = datasets.OPENWORLDCIFAR100(root=root, labeled=False, labeled_num=args.labeled_num, labeled_ratio=args.labeled_ratio, download=True, transform=TransformTwice(datasets.dict_transform['cifar100_train']), unlabeled_idxs=train_label_set.unlabeled_idxs)
test_set = datasets.OPENWORLDCIFAR100(root=root, labeled=False, labeled_num=args.labeled_num, labeled_ratio=args.labeled_ratio, download=True, transform=datasets.dict_transform['cifar100_test'], unlabeled_idxs=train_label_set.unlabeled_idxs)
args.n_proto = 500
n_classes = 100
args.lamda_graph = 0.9
args.nn = 10
else:
warnings.warn('Dataset is not listed')
return
if not args.unknown_n_cls:
args.group_method = 'spectral'
fix_epoch = 20
if args.save_log:
NAME = '{}_lratio0{:d}{}'.format(args.dataset, int(args.labeled_ratio*10),
"_"+args.group_method if args.unknown_n_cls else '')
args.savedir = args.exp_root + NAME
if not os.path.exists(args.savedir):
os.makedirs(args.savedir)
sys.stdout = Logger(args.savedir + '/{}.log'.format(NAME), sys.stdout)
else:
args.savedir = args.exp_root
labeled_len = len(train_label_set)
unlabeled_len = len(train_unlabel_set)
labeled_batch_size = int(args.batch_size * labeled_len / (labeled_len + unlabeled_len))
# Initialize the splits
train_label_loader = torch.utils.data.DataLoader(train_label_set, batch_size=labeled_batch_size, shuffle=True, num_workers=8, drop_last=True)
train_unlabel_loader = torch.utils.data.DataLoader(train_unlabel_set, batch_size=args.batch_size - labeled_batch_size, shuffle=True, num_workers=8, drop_last=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=100, shuffle=False, num_workers=8)
model = Model(arch=args.backbone, proto_num=args.n_proto, latent_dim=args.ldim, tau=args.tau, device=device)
model = model.to(device)
if args.dataset == 'cifar10':
state_dict = torch.load('./pretrained/simclr_cifar_10.pth.tar')
elif args.dataset == 'cifar100':
state_dict = torch.load('./pretrained/simclr_cifar_100.pth.tar')
model.encoder.load_state_dict(state_dict, strict=False)
model = model.to(device)
# Freeze the earlier filters
for name, param in model.encoder.named_parameters():
if 'projector' not in name and 'layer4' not in name:
param.requires_grad = False
encoder_params = list(model.encoder.parameters())
prototype_params = [model.prototypes]
optimizer = optim.Adam([{'params': filter(lambda p: p.requires_grad, encoder_params)},
{'params': prototype_params,'lr': args.lr_proto}], lr=args.lr, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=0.1)
start_epoch = 0
for epoch in range(start_epoch, args.epochs):
if epoch < args.warm_epoch: # warm up
print('*****Epoch {} Warming stage*****'.format(epoch))
args.reg[1] = 0
elif epoch < args.fix_epoch:
print('*****Epoch {} Grouping stage*****'.format(epoch))
args.reg[1] = 0.0 if args.unknown_n_cls else 1
proto_graph, proto_mask, group_mask, proto_ind, acc = val(args, model, device, train_label_loader, train_unlabel_loader, epoch, n_classes, model.proto_mask)
model.proto_graph = proto_graph.to(device)
model.proto_mask = torch.tensor(proto_mask).to(device)
model.group_mask = torch.tensor(group_mask).to(device)
model.proto_ind = proto_ind
print('Current GroupNum:{}'.format(model.group_mask.shape[0]))
else:
print('*****Epoch {} Fixing stage*****'.format(epoch))
args.reg[1] = 1
pass
train(args, model, device, train_label_loader, train_unlabel_loader, optimizer, epoch)
test(args, model, args.labeled_num, device, test_loader, epoch)
scheduler.step()
print('Current Time: ', args.time_stamp)
torch.save(model.state_dict(), args.savedir + '/ckpt.pth')
if __name__ == '__main__':
main()