Skip to content

Commit

Permalink
initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
PeizhuoLi committed May 4, 2021
0 parents commit e899354
Show file tree
Hide file tree
Showing 63 changed files with 289,773 additions and 0 deletions.
96 changes: 96 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
# Learning Skeletal Articulations with Neural Blend Shapes

![Python](https://img.shields.io/badge/Python->=3.7-Blue?logo=python) ![Pytorch](https://img.shields.io/badge/PyTorch->=1.6.0-Red?logo=pytorch)
![Blender](https://img.shields.io/badge/Blender-%3E=2.8-Orange?logo=blender)

This repository provides an end-to-end library for automatic character rigging and blend shapes generation. It is based on our work [Learning Skeletal Articulations with Neural Blend Shapes](https://peizhuoli.github.io/neural-blend-shapes/index.html), which is published in SIGGRAPH 2021.

<img src="https://peizhuoli.github.io/neural-blend-shapes/images/video_teaser.gif" slign="center">

## Prerequisites

- Linux
- Python 3
- PyTorch

## Quick Start

We provide a pretrained model that is dedicated for biped character. Download and extracat the pretrained model from [Google Drive](https://drive.google.com/file/d/1S_JQY2N4qx1V6micWiIiNkHercs557rG/view?usp=sharing) or [Baidu Disk](https://pan.baidu.com/s/1y8iBqf1QfxcPWO0AWd2aVw) (9ras) and put the `pre_trained` folder under the project directory. Run

~~~bash
python demo.py --pose_file=./eval_constant/sequences/greeting.npy --obj_path=./eval_constant/meshes/maynard.obj
~~~

The nice greeting animation showed above will be saved in `demo/obj` as obj files. Besides, the generated skeleton will be saved as `demo/skeleton.bvh` and the skinning weight matrix will be saved as `demo/weight.npy`.

If you are also interested in traditional linear blend skinning(LBS) technique results generated with our rig, you can also specify `--envelope_only=1` to evaluate our model with only envelope branch.

We also provided several other meshes and animation sequences, feel free to try their combinations!

### Test on Customized Meshes

You may also try to run our model with your own meshes. Please make sure your mesh is triangulated and has a consistent upright and front facing orientation. Most importantly, our model requires the input meshes are spatially aligned, so please also specify `--normalize=1`. Alternatively, you can try to scale and translate your mesh to align the provided `eval_constant/meshes/smpl_std.obj` and specify `--normalize=0`.

### Evaluation

To reconstruct the quantitative result with the pretrained model, you need to download the test dataset from [Google Drive](https://drive.google.com/file/d/1RwdnnFYT30L8CkUb1E36uQwLNZd1EmvP/view?usp=sharing) or [Baidu Disk](https://pan.baidu.com/s/1c5QCQE3RXzqZo6PeYjhtqQ) (8b0f) and put the two extracted folders under `./dataset`. Then run

~~~bash
python evaluation.py
~~~



## Blender Visualization

We provide a simple wrapper of blender's python API (>=2.80) for rendering 3D mesh animations and visualize skinning weight. The following code has been tested on Ubuntu 18.04 and macOS Big Sur.

Note that due to the limitation of Blender, you cannot run Eevee render engine with a headless machine.

To pass parameters to python script in blender, please do following:

~~~bash
blender [blend file path(optional)] -P [python script path] [-b] -- --arg1 [ARG1] --arg2 [ARG2]
~~~



### Animation

We provide a simple light and camera setting in `eval_constant/simple_scene.blend`. You may need to adjust it before using. To render the obj files genrated above, run

~~~bash
cd blender_script
blender ../eval_constant/simple_scene.blend -P render_mesh.py -b
~~~

The rendered per-frame image will be saved in `demo/images` and composited video will be saved as `demo/video.mov`. We use `ffmpeg` to convert images into video. Pealse make sure you have installed it.

### Skinning Weight

Visualize the skinning weight is a good sanity check to see whether the model works as expected. We provide a script using Blender's built-in ShaderNodeVertexColor to visualize the skinning weight. Simply run

~~~bash
cd blender_script
blender -P vertex_color.py
~~~

You will see something similar to this if the model works as expected:

<img src="https://peizhuoli.github.io/neural-blend-shapes/images/skinning_vis.png" slign="center" width="30%">

Mean while, you can import the generated skeleton (in `demo/skeleton.bvh`) to Blender. For skeleton rendering, please refer to [deep-motion-editing](https://github.com/DeepMotionEditing/deep-motion-editing).

## Acknowledgement

The code in `meshcnn` is adapted from [MeshCNN](https://github.com/ranahanocka/MeshCNN) by [@ranahanocka](https://github.com/ranahanocka/).

The code in `models/skeleton.py` is adapted from [deep-motion-editing](https://github.com/DeepMotionEditing/deep-motion-editing) by [@kfiraberman](https://github.com/kfiraberman), [@PeizhuoLi](https://github.com/PeizhuoLi) and [@HalfSummer11](https://github.com/HalfSummer11).

The code in `dataset/smpl_layer` is adapted from [smpl_pytorch](https://github.com/gulvarol/smplpytorch) by [@gulvarol](https://github.com/gulvarol).

Part of the test models are taken from and [SMPL](https://smpl.is.tue.mpg.de/en), [MultiGarmentNetwork](https://github.com/bharat-b7/MultiGarmentNetwork) and [Adobe Mixamo](https://www.mixamo.com).



This repository is still under construction. We are planning to release the code and dataset for training soon.
100 changes: 100 additions & 0 deletions architecture/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
from models.networks import MeshReprConv, MLP, MLPSkeleton
from architecture.blend_shapes import BlendShapesModel
from os.path import join as pjoin


def create_envelope_model(device, args, topo_loader, parents=None, is_train=True):
base = args.base
layers = args.num_layers
bone_num = 24

channel_list = [base]

for i in range(layers - 1):
channel_list.append(channel_list[-1] * 2)
geo_list = [3] + channel_list # This is for vertex position

gen_list = geo_list[::-1]

if not args.skeleton_aware:
gen_list = [c * bone_num for c in gen_list]
else:
gen_list = [c * bone_num for c in gen_list]

channel_list = [args.att_base]
for i in range(layers - 2):
channel_list.append(channel_list[-1] * 2)
att_list = [3] + channel_list + [bone_num]

save_path = args.save_path

geometry_branch = MeshReprConv(device, is_train=is_train, save_path=pjoin(save_path, 'geo/'),
channels=geo_list,
topo_loader=topo_loader, requires_recorder=True, is_cont=args.cont,
save_freq=args.save_freq)

att_branch = MeshReprConv(device, is_train=is_train, save_path=pjoin(save_path, 'att/'),
channels=att_list,
topo_loader=topo_loader, last_activate=False, requires_recorder=False,
pool_ratio=args.pool_ratio, pool_method=args.pool_method,
is_cont=args.cont, save_freq=args.att_save_freq)

if not args.skeleton_aware:
gen_branch = MLP(layers=gen_list,
save_path=pjoin(save_path, 'gen/'),
is_train=is_train,
device=device).to(device)
else:
gen_branch = MLPSkeleton(layers=gen_list, parents=parents,
save_path=pjoin(save_path, 'gen/'),
is_train=is_train, save_freq=args.save_freq,
device=device).to(device)

return geometry_branch, att_branch, gen_branch


def create_residual_model(device, args, topo_loader, is_train=True, parents=None, requires_att=True):
base = args.base
layers = args.num_layers
bone_num = 24

channel_list = [base]

for i in range(layers - 1):
channel_list.append(channel_list[-1] * 2)
geo_list = [3] + channel_list # This is for vertex position

gen_list = geo_list[::-1]
gen_list = gen_list[:2] + [args.basis_per_bone * 3]
gen_list[0] += bone_num

channel_list = [args.att_base]
for i in range(layers - 2):
channel_list.append(channel_list[-1] * 2)
att_list = [3] + channel_list + [bone_num]

save_path = args.save_path

geometry_branch = MeshReprConv(device, is_train=is_train, save_path=pjoin(save_path, 'geo2/'),
channels=geo_list,
topo_loader=topo_loader, requires_recorder=True, is_cont=args.cont,
save_freq=args.save_freq)

if requires_att:
att_branch = MeshReprConv(device, is_train=False, save_path=pjoin(args.att_load_path, 'att/'),
channels=att_list,
topo_loader=topo_loader, last_activate=False, requires_recorder=False,
pool_ratio=args.pool_ratio, pool_method=args.pool_method,
is_cont=args.cont, save_freq=args.att_save_freq)
else:
att_branch = None

gen_branch = MeshReprConv(device, is_train=is_train, save_path=pjoin(save_path, 'dec/'),
channels=gen_list,
topo_loader=topo_loader, last_activate=False, requires_recorder=False,
is_cont=args.cont, last_init_div=args.offset_init_div)

coff_branch = BlendShapesModel(1, bone_num - 1, args.basis_per_bone, parent=parents, basis_as_model=False,
save_freq=args.save_freq, save_path=pjoin(save_path, 'coff/'), device=device).to(device)

return geometry_branch, att_branch, gen_branch, coff_branch
148 changes: 148 additions & 0 deletions architecture/blend_shapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
import torch
import torch.nn as nn
from models.transforms import aa2quat, aa2mat
from models.networks import MLP
from os.path import join as pjoin
import os


class BlendShapesModel(nn.Module):
def __init__(self, n_vert, n_joint, basis_per_joint,
weight=None, parent=None, basis_as_model=True, save_freq=500, save_path=None, device=None,
threshold=0.05):
super(BlendShapesModel, self).__init__()
self.epoch_count = 0

self.n_vert = n_vert
self.n_joint = n_joint
self.basis_per_joint = basis_per_joint
self.parent = parent
self.save_path = save_path
self.save_freq = save_freq
self.device = device
self.threshold = threshold

if save_path is not None:
os.makedirs(pjoin(save_path, 'model'), exist_ok=True)
os.makedirs(pjoin(save_path, 'optimizer'), exist_ok=True)

basis = torch.randn((6890, basis_per_joint, 3)) / 10000
if basis_as_model:
self.basis = nn.Parameter(basis)
else:
self.basis = basis

coff_list = [9, 18, 32, basis_per_joint]
self.coff_branch = nn.ModuleList()
for i in range(n_joint):
coff_branch = MLP(coff_list)
self.coff_branch.append(coff_branch)

if weight is not None:
mask = torch.empty((n_vert, n_joint), dtype=torch.bool)
for i in range(n_joint):
p = parent[i + 1]
x = i + 1
threshold = self.threshold if i not in [19, 20] else 0.02
mask[:, i] = (weight[:, x] > threshold) + (weight[:, p] > threshold)
mask = mask.float()
self.register_buffer('mask', mask) # shape = (n_vert, n_bone)

def set_mask(self, weight):
self.n_vert = weight.shape[0]
mask = torch.empty((weight.shape[0], weight.shape[1] - 1), dtype=torch.bool, device=weight.device)
for i in range(weight.shape[1] - 1):
p = self.parent[i + 1]
x = i + 1
threshold = self.threshold if i not in [19, 20] else 0.02
# Larger control field of wrist joints (joint 19 and 20)
mask[:, i] = (weight[:, x] > threshold) + (weight[:, p] > threshold)
# A joint should affect the vertices associated with itself and it parent joint
mask = mask.float()
self.mask = mask

def set_optimizer(self, lr=1e-3, optimizer=torch.optim.Adam):
params = self.parameters()
self.optimizer = optimizer(params, lr=lr)

def get_coff(self, pose):
"""
@return: (batch_size, n_vert, n_basis_per_bone)
"""
batch_size = pose.shape[0]
device = pose.device
if len(pose.shape) == 2:
pose_repr = aa2mat(pose.reshape(pose.shape[0], -1, 3))
elif len(pose.shape) == 4:
pose_repr = pose.reshape(batch_size, -1, 3, 3)
else:
raise Exception('Wrong input format')
pose_repr = pose_repr[:, 1:]
pose_repr = pose_repr.reshape(-1, 9)
identical = torch.eye(3, device=device).reshape(-1)

pose_repr = pose_repr - identical

pose_repr = pose_repr.reshape(pose.shape[0], self.n_joint, -1)
coff = []
for i in range(pose_repr.shape[1]):
coff.append(self.coff_branch[i](pose_repr[:, i]).unsqueeze(1))
coff = torch.cat(coff, dim=1)

return coff

def forward(self, pose, basis=None, mem_eff=True, requires_per_joint_off=False):
"""
Get per-vertex displacement
@param mem_eff: Use a for loop to increase memory efficiency
"""
coff = self.get_coff(pose) # (batch_size, n_bone, n_basis)
mask_full = self.mask.reshape(self.n_vert, self.n_joint, 1, 1)
if basis is None:
basis = self.basis
basis = basis.reshape(self.n_vert, 1, self.basis_per_joint, 3)
basis_full = basis * mask_full # (n_vert, n_bone, n_basis, 3)
basis_full = basis_full.reshape(1, self.n_vert, -1, 3)
coff = coff.reshape(coff.shape[0], 1, -1, 1)
if requires_per_joint_off:
per_joint_off = coff * basis_full
per_joint_off = (per_joint_off * per_joint_off).sum(dim=-1).mean(dim=1)
per_joint_off = per_joint_off.reshape(per_joint_off.shape[0], -1, self.basis_per_joint)
per_joint_off = per_joint_off.mean(dim=-1)
per_joint_off = torch.cat((torch.zeros_like(per_joint_off[:, :1]), per_joint_off), dim=1)
self.per_joint_off = per_joint_off
if mem_eff:
res = []
for i in range(coff.shape[0]):
res.append((coff[[i]] * basis_full).sum(dim=-2))
res = torch.cat(res, dim=0)
else:
res = (coff * basis_full).sum(dim=-2)
return res

def epoch(self):
self.epoch_count += 1

def save_model(self, epoch=None):
if epoch is None:
epoch = self.epoch_count

if epoch % self.save_freq == 0:
torch.save(self.state_dict(), pjoin(self.save_path, 'model/%05d.pt' % epoch))
torch.save(self.optimizer.state_dict(), pjoin(self.save_path, 'optimizer/%05d.pt' % epoch))

torch.save(self.state_dict(), pjoin(self.save_path, 'model/latest.pt'))
torch.save(self.optimizer.state_dict(), pjoin(self.save_path, 'optimizer/latest.pt'))

def load_model(self, epoch=None):
if epoch is None:
epoch = self.epoch_count

if isinstance(epoch, str):
state_dict = torch.load(epoch, map_location=self.device)
self.load_state_dict(state_dict)

else:
filename = ('%05d.pt' % epoch) if epoch != -1 else 'latest.pt'
state_dict = torch.load(pjoin(self.save_path, f'model/{filename}'), map_location=self.device)
self.load_state_dict(state_dict, strict=False)
Loading

0 comments on commit e899354

Please sign in to comment.