Skip to content

Commit

Permalink
deploy: f41bf58
Browse files Browse the repository at this point in the history
  • Loading branch information
NikolaosPapailiou committed Oct 14, 2024
1 parent bfeb31d commit 85c193a
Show file tree
Hide file tree
Showing 5 changed files with 53 additions and 29 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -243,7 +243,7 @@ <h3 class="anchored" data-anchor-id="tiledb.vector_search.embeddings.ObjectEmbed
<section id="tiledb.vector_search.embeddings.ObjectEmbedding.embed" class="level3">
<h3 class="anchored" data-anchor-id="tiledb.vector_search.embeddings.ObjectEmbedding.embed">embed</h3>
<p><code>vector_search.embeddings.ObjectEmbedding.embed(objects, metadata)</code></p>
<p>Creates embedding vectors for objects. Returns a numpy array of embedding vectors. There is no enforced restriction on the object format. ObjectReaders and ObjectEmbeddings should use comatible object and metadata formats.</p>
<p>Creates embedding vectors for objects. Returns a numpy array of embedding vectors. There is no enforced restriction on the object format. ObjectReaders and ObjectEmbeddings should use compatible object and metadata formats.</p>
<section id="parameters" class="level4">
<h4 class="anchored" data-anchor-id="parameters">Parameters</h4>
<table class="caption-top table">
Expand Down
34 changes: 29 additions & 5 deletions docs/documentation/reference/object_api.ObjectIndex.html
Original file line number Diff line number Diff line change
Expand Up @@ -340,7 +340,7 @@ <h2 class="anchored" data-anchor-id="methods">Methods</h2>
</table>
<section id="tiledb.vector_search.object_api.ObjectIndex.query" class="level3">
<h3 class="anchored" data-anchor-id="tiledb.vector_search.object_api.ObjectIndex.query">query</h3>
<p><code>vector_search.object_api.ObjectIndex.query(query_objects, k, query_metadata=None, metadata_array_cond=None, metadata_df_filter_fn=None, return_objects=True, return_metadata=True, driver_mode=Mode.REALTIME, driver_resource_class=None, driver_resources=None, extra_driver_modules=None, driver_access_credentials_name=None, **kwargs)</code></p>
<p><code>vector_search.object_api.ObjectIndex.query(query_objects, k, query_metadata=None, metadata_array_cond=None, metadata_df_filter_fn=None, return_objects=True, return_metadata=True, driver_mode=Mode.REALTIME, driver_resource_class=None, driver_resources=None, extra_driver_modules=None, driver_access_credentials_name=None, merge_results_result_pos_as_score=True, merge_results_reverse_dist=None, merge_results_per_query_embedding_group_fn=max, merge_results_per_query_group_fn=operator.add, **kwargs)</code></p>
<p>Queries the index and returns the nearest neighbors for each query object.</p>
<p>The query objects can be any type of object that is supported by the object reader. For example, if the object reader is configured to read images, then the query objects should be images.</p>
<p>The <code>k</code> parameter specifies the number of nearest neighbors to return for each query object.</p>
Expand All @@ -355,9 +355,9 @@ <h4 class="anchored" data-anchor-id="parameters-1">Parameters</h4>
<table class="caption-top table">
<colgroup>
<col style="width: 15%">
<col style="width: 14%">
<col style="width: 62%">
<col style="width: 7%">
<col style="width: 10%">
<col style="width: 68%">
<col style="width: 5%">
</colgroup>
<thead>
<tr class="header">
Expand Down Expand Up @@ -441,6 +441,30 @@ <h4 class="anchored" data-anchor-id="parameters-1">Parameters</h4>
<td><code>None</code></td>
</tr>
<tr class="odd">
<td><code>merge_results_result_pos_as_score</code></td>
<td>bool</td>
<td>Applies only when there are multiple query embeddings per query. If True, each result score is based on the position of the result for the query embedding.</td>
<td><code>True</code></td>
</tr>
<tr class="even">
<td><code>merge_results_reverse_dist</code></td>
<td>Optional[bool]</td>
<td>Applies only when there are multiple query embeddings per query. If True, the distances are reversed based on their reciprocal, (1 / dist).</td>
<td><code>None</code></td>
</tr>
<tr class="odd">
<td><code>merge_results_per_query_embedding_group_fn</code></td>
<td>Callable</td>
<td>Applies only when there are multiple query embeddings per query. Group function used to group together object scores per query embedding (i.e max, min, etc.).</td>
<td><code>max</code></td>
</tr>
<tr class="even">
<td><code>merge_results_per_query_group_fn</code></td>
<td>Callable</td>
<td>Applies only when there are multiple query embeddings per query. Group function used to group together object scores per query (i.e add). This is applied after <code>merge_results_per_query_embedding_group_fn</code></td>
<td><code>operator.add</code></td>
</tr>
<tr class="odd">
<td><code>**kwargs</code></td>
<td></td>
<td>Keyword arguments to pass to the index query method.</td>
Expand Down Expand Up @@ -477,7 +501,7 @@ <h4 class="anchored" data-anchor-id="returns">Returns</h4>
</section>
<section id="tiledb.vector_search.object_api.ObjectIndex.update_index" class="level3">
<h3 class="anchored" data-anchor-id="tiledb.vector_search.object_api.ObjectIndex.update_index">update_index</h3>
<p><code>vector_search.object_api.ObjectIndex.update_index(index_timestamp=None, workers=-1, worker_resources=None, worker_image=None, extra_worker_modules=None, driver_resources=None, driver_image=None, extra_driver_modules=None, worker_access_credentials_name=None, max_tasks_per_stage=-1, verbose=False, trace_id=None, embeddings_generation_mode=Mode.LOCAL, embeddings_generation_driver_mode=Mode.LOCAL, vector_indexing_mode=Mode.LOCAL, config=None, namespace=None, environment_variables={}, **kwargs)</code></p>
<p><code>vector_search.object_api.ObjectIndex.update_index(index_timestamp=None, workers=-1, worker_resources=None, worker_image=None, extra_worker_modules=None, driver_resources=None, driver_image=None, extra_driver_modules=None, worker_access_credentials_name=None, max_tasks_per_stage=-1, verbose=False, trace_id=None, embeddings_generation_mode=Mode.LOCAL, embeddings_generation_driver_mode=Mode.LOCAL, vector_indexing_mode=Mode.LOCAL, config=None, namespace=None, environment_variables={}, use_updates_array=True, **kwargs)</code></p>
<p>Updates the index with new data.</p>
<p>This method can be used to update the index with new data. This is useful if the data that the index is built on has changed.</p>
<p>Update uses the <code>ingest_embeddings_with_driver</code> function to add embeddings into a TileDB vector search index.</p>
Expand Down
2 changes: 1 addition & 1 deletion docs/documentation/reference/object_api.create.html
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,7 @@ <h2 id="toc-title">On this page</h2>

<section id="tiledb.vector_search.object_api.create" class="level1">
<h1>object_api.create</h1>
<p><code>vector_search.object_api.create(uri, index_type, object_reader, embedding, config=None, storage_version=STORAGE_VERSION, **kwargs)</code></p>
<p><code>vector_search.object_api.create(uri, index_type, object_reader, embedding, config=None, storage_version=STORAGE_VERSION, metadata_tile_size=10000, **kwargs)</code></p>
<p>Creates a new ObjectIndex.</p>
<section id="parameters" class="level2">
<h2 class="anchored" data-anchor-id="parameters">Parameters</h2>
Expand Down
Loading

0 comments on commit 85c193a

Please sign in to comment.