forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Misc] Support register quantization method out-of-tree (vllm-project…
…#11969) Signed-off-by: Bowen Wang <[email protected]>
- Loading branch information
Showing
2 changed files
with
158 additions
and
0 deletions.
There are no files selected for viewing
117 changes: 117 additions & 0 deletions
117
tests/quantization/test_register_quantization_config.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
"""Tests register custom quantization config. | ||
See https://github.com/vllm-project/vllm/issues/11926 for more details. | ||
Run `pytest tests/quantization/test_register_quantization_config.py`. | ||
""" | ||
from typing import Any, Dict, List, Optional | ||
|
||
import pytest | ||
import torch | ||
import torch.nn.functional as F | ||
|
||
from vllm.model_executor.layers.linear import LinearBase # noqa: E501 | ||
from vllm.model_executor.layers.linear import UnquantizedLinearMethod | ||
from vllm.model_executor.layers.quantization import ( | ||
get_quantization_config, register_quantization_config) | ||
from vllm.model_executor.layers.quantization.base_config import ( # noqa: E501 | ||
QuantizationConfig) | ||
|
||
|
||
class FakeQuantLinearMethod(UnquantizedLinearMethod): | ||
"""Fake quantization linear method for per-token dynamic quantization.""" | ||
|
||
def __init__(self, num_bits: int = 8) -> None: | ||
"""Initialize the quantization method.""" | ||
super().__init__() | ||
self.num_bits = num_bits | ||
|
||
def apply(self, | ||
layer: "torch.nn.Module", | ||
x: "torch.Tensor", | ||
bias: Optional["torch.Tensor"] = None) -> "torch.Tensor": | ||
"""Perform fake quantization before the linear layer.""" | ||
|
||
# Calculate the scales dynamically | ||
max_val = torch.amax(x, dim=(0, -1), keepdims=True) | ||
min_val = torch.amin(x, dim=(0, -1), keepdims=True) | ||
scales = (max_val - min_val) / (2**self.num_bits - 1) | ||
|
||
# Fake quantize the input | ||
quant_x = torch.clamp(torch.round(x / scales), -2**(self.num_bits - 1), | ||
2**(self.num_bits - 1) - 1) | ||
dequant_x = quant_x * scales | ||
|
||
return F.linear(dequant_x, layer.weight, bias) | ||
|
||
|
||
@register_quantization_config("custom_quant") | ||
class CustomQuantConfig(QuantizationConfig): | ||
"""Custom quantization config for per-token dynamic fake quantization.""" | ||
|
||
def __init__(self, num_bits: int = 8) -> None: | ||
"""Initialize the quantization config.""" | ||
self.num_bits = num_bits | ||
|
||
def get_name(self) -> str: | ||
"""Name of the quantization method.""" | ||
return "custom_quant" | ||
|
||
def get_supported_act_dtypes(self) -> List["torch.dtype"]: | ||
"""List of supported activation dtypes.""" | ||
return [torch.float16, torch.bfloat16] | ||
|
||
@classmethod | ||
def get_min_capability(cls) -> int: | ||
"""Minimum GPU capability to support the quantization method.""" | ||
return -1 | ||
|
||
@staticmethod | ||
def get_config_filenames() -> List[str]: | ||
"""List of filenames to search for in the model directory.""" | ||
return [] | ||
|
||
@classmethod | ||
def from_config(cls, config: Dict[str, Any]) -> "CustomQuantConfig": | ||
"""Create a config class from the model's quantization config.""" | ||
return CustomQuantConfig(num_bits=config.get("num_bits", 8)) | ||
|
||
def get_quant_method(self, layer: "torch.nn.Module", | ||
prefix: str) -> Optional["FakeQuantLinearMethod"]: | ||
"""Get the quantize method to use for the quantized layer.""" | ||
if isinstance(layer, LinearBase): | ||
return FakeQuantLinearMethod(num_bits=self.num_bits) | ||
return None | ||
|
||
|
||
def test_register_quantization_config(): | ||
"""Test register custom quantization config.""" | ||
|
||
# The quantization method `custom_quant` should be registered. | ||
assert get_quantization_config("custom_quant") == CustomQuantConfig | ||
|
||
# The quantization method `custom_quant` is already exists, | ||
# should raise an error. | ||
with pytest.raises(ValueError): | ||
register_quantization_config("custom_quant")(CustomQuantConfig) | ||
|
||
|
||
@pytest.mark.parametrize(argnames="model", | ||
argvalues=[ | ||
"meta-llama/Meta-Llama-3-8B-Instruct", | ||
]) | ||
def test_custom_quant(vllm_runner, model): | ||
"""Test infer with the custom quantization method.""" | ||
with vllm_runner(model_name=model, | ||
quantization="custom_quant", | ||
enforce_eager=True) as llm: | ||
|
||
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 | ||
layer = model.model.layers[0] | ||
qkv_proj = layer.self_attn.qkv_proj | ||
|
||
# Check the quantization method is FakeQuantLinearMethod | ||
assert isinstance(qkv_proj.quant_method, FakeQuantLinearMethod) | ||
|
||
output = llm.generate_greedy("Hello my name is", max_tokens=20) | ||
assert output |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters