Skip to content

alvarovm/minigap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

                                                                              
                                    ███████████      █████      ███████████    
                                    ███     ███    █████████    ███     ███    
                                    ███     ███   ████   ████   ███     ███    
                                    ███           ███     ███   ███     ███    
                                    ███           ███     ███   ███████████    
                 ██            ██   ███   █████   ███████████   ███            
    ██████████        ██████        ███     ███   ███     ███   ███            
    ██  ██  ██   ██   ██  ██   ██   ███     ███   ███     ███   ███            
    ██  ██  ██   ██   ██  ██   ██   ███████████   ███     ███   ███            
                                                                               

Introduction

miniGAP is a proxy application for molecular and materials property prediction using the Gaussian Process Approximation. This is code is meant to run in multiple architectures, such as many-core and accelerators.

Installation

This code could be installed within an conda enviroment as:

conda env create -f environment.yml

Then the new environment is activated as:

conda activate minigap

Creating an custom kernel in Jupiter

conda activate minigap
python -m ipykernel install --user --name "minigap"

Dependencies:

  • python >= 3.6
  • dscribe
  • SYCL compiler
  • Tensorflow
  • Tensorflow-probability
  • GPflow
  • scikit-learn

What is inside?

  • data: Initial XYZ, sample trajectories, and downloaded material.
  • code: Repo specific modules for training and creating the models.
  • notebooks:
  • results: Figures and models
  • media: Assorted Images

Contributors

Contributions are always welcome. Contributors should fork this repository and submit a merge request for review of the code.

References

Dscribe

GAP

Copyright 2021 Argonne UChicago LLC

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •