-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). #18
Comments
Yes, I also encountered this problem.Have you solved it? |
I also encountered a similar issue where the node_1_type/node_2_type was not a string, and it could be both an inflow and outflow at the same time, which caused the error. I later modified it to only take the first one, which solved the problem. Here is the specific modification: I changed the part of the construct_intercellular_flow_network function where: to: Classify node typestemp_type1 = flow_var_info.loc[node_1]['Type'] |
I seem to have solved this problem by the definition of apply_biological_flow |
@22219098 I encountered similar error 'ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()'. To resolve this construct cellChatDB.use using 'Secreted Signaling'. |
Hi 22219098, Thank you for the question and I'm very sorry for my extremely late reply. One reason I can think that this is the case is that you have two nodes of different types with the same name. The most likely case when this would happen is that you have an inflow node and outflow node that are the same. For example, if you have inferred cell-cell communication and inferred Cell-Cell Contact-based interactions, e.g., Cdh1-Cdh1 from the Cadherin CDH pathway. This is why fmulenge's solution works. Do you mind checking for me if that's the case? If not, I'll have to come back to the drawing board. Thank you! Best wishes, |
Hi Axel, |
Hi Axel, |
Hi,
we met the problem when we ran code with our own adata:
AnnData object with n_obs × n_vars = 28374 × 25086
obs: 'cell_subtype', 'batch', 'n_genes_by_counts', 'total_counts', 'total_counts_mt', 'pct_counts_mt'
var: 'mt', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts'
uns: 'cellchat_output', 'log1p', 'pyliger_info', 'flowsig_network', 'flowsig_network_orig'
obsm: 'X_gem', 'X_flow', 'X_flow_orig'
layers: 'counts'
This is the error report:
But when we tried to run tutorial on example burkhardt21_merged.h5ad, this error did not occur.
AnnData object with n_obs × n_vars = 5305 × 18027
obs: 'sample_labels', 'Donor', 'Condition', 'library_size', 'n_genes_by_counts', 'total_counts', 'total_counts_mt', 'pct_counts_mt', 'doublet_score', 'predicted_doublet', 'n_counts', 'log_counts', 'n_genes', 'leiden', 'Type'
var: 'gene_symbols', 'mt', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts', 'n_cells', 'highly_variable', 'means', 'dispersions', 'dispersions_norm', 'highly_variable_nbatches', 'highly_variable_intersection'
uns: 'Condition', 'Condition_colors', 'Donor_colors', 'NMF_10', 'NMF_CV', 'Type', 'base_networks', 'base_networks_leiden', 'causal_networks', 'causal_networks_leiden', 'cellchat_output', 'cpdb_Type', 'flowsig_network', 'flowsig_network_cpdb', 'flowsig_network_cpdb_orig', 'flowsig_network_orig', 'hvg', 'learned_networks', 'leiden', 'leiden_colors', 'log1p', 'neighbors', 'pca', 'pyliger', 'pyliger_10', 'pyliger_11', 'pyliger_12', 'pyliger_15', 'pyliger_20', 'pyliger_3', 'pyliger_5', 'pyliger_8', 'pyliger_9', 'pyliger_info', 'pyliger_vars', 'sample_labels_colors', 'scrublet', 'umap'
obsm: 'X_SC', 'X_celltype_ligand', 'X_celltype_ligand_leiden', 'X_flow', 'X_flow_cpdb', 'X_flow_cpdb_orig', 'X_flow_orig', 'X_gem', 'X_pca', 'X_umap'
varm: 'PCs'
layers: 'counts', 'normalized'
obsp: 'connectivities', 'distances'
My environment is :
Package Version
absl-py 2.1.0
adjustText 1.2.0
aiohappyeyeballs 2.4.0
aiohttp 3.10.5
aiosignal 1.3.1
anndata 0.9.2
annoy 1.17.3
asciitree 0.3.3
asttokens 2.0.5
astunparse 1.6.3
async-timeout 4.0.3
attrs 24.2.0
backcall 0.2.0
backports.zoneinfo 0.2.1
biothings-client 0.3.1
bleach 6.1.0
bokeh 3.1.1
cachetools 5.5.0
causaldag 0.1a163
certifi 2024.8.30
charset-normalizer 3.3.2
click 8.1.7
cloudpickle 3.0.0
colorcet 3.1.0
comm 0.2.1
conditional-independence 0.1a6
contourpy 1.1.1
cycler 0.12.1
dask 2023.5.0
dask-image 2023.3.0
dataclasses 0.6
datashader 0.15.2
datashape 0.5.2
debugpy 1.6.7
decorator 5.1.1
dill 0.3.8
dm-tree 0.1.8
docopt 0.6.2
docrep 0.3.2
einops 0.8.0
et-xmlfile 1.1.0
executing 0.8.3
fasteners 0.19
filelock 3.16.1
flatbuffers 24.3.25
flowsig 0.1.1
fonttools 4.54.0
frozendict 2.4.4
frozenlist 1.4.1
fsspec 2024.9.0
ftpretty 0.4.0
gast 0.4.0
get-annotations 0.1.2
goatools 1.4.12
google-ai-generativelanguage 0.1.0
google-api-core 2.20.0
google-auth 2.35.0
google-auth-oauthlib 1.0.0
google-generativeai 0.1.0rc1
google-pasta 0.2.0
googleapis-common-protos 1.65.0
graphical-model-learning 0.1a8
graphical-models 0.1a21
grpcio 1.66.1
grpcio-status 1.62.3
h5py 3.11.0
h5sparse 0.1.0
holoviews 1.17.1
idna 3.10
igraph 0.11.6
imageio 2.35.1
importlib-metadata 7.0.1
importlib_resources 6.4.5
inflect 7.0.0
ipdb 0.13.13
ipykernel 6.28.0
ipython 8.12.2
jedi 0.19.1
Jinja2 3.1.4
joblib 1.4.2
jupyter_client 8.6.0
jupyter_core 5.7.2
keras 2.13.1
kiwisolver 1.4.7
lazy_loader 0.4
leidenalg 0.10.2
libclang 18.1.1
linkify-it-py 2.0.3
llvmlite 0.41.1
locket 1.0.0
louvain 0.8.2
Markdown 3.7
markdown-it-py 3.0.0
MarkupSafe 2.1.5
matplotlib 3.7.5
matplotlib-inline 0.1.6
matplotlib-scalebar 0.8.1
mdit-py-plugins 0.4.2
mdurl 0.1.2
mizani 0.9.3
mpmath 1.3.0
multidict 6.1.0
multipledispatch 1.0.0
mygene 3.2.2
natsort 8.4.0
nest-asyncio 1.6.0
networkx 3.1
numba 0.58.1
numcodecs 0.12.1
numexpr 2.8.6
numpy 1.24.3
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu12 8.9.2.26
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu12 12.1.0.106
nvidia-nccl-cu12 2.18.1
nvidia-nvjitlink-cu12 12.6.68
nvidia-nvtx-cu12 12.1.105
oauthlib 3.2.2
omnipath 1.0.8
openpyxl 3.1.5
opt-einsum 3.3.0
packaging 24.1
pandas 2.0.3
panel 1.2.3
param 2.1.1
parso 0.8.3
partd 1.4.1
patsy 0.5.6
pexpect 4.8.0
pgmpy 0.1.26
pickleshare 0.7.5
pillow 10.4.0
PIMS 0.7
pip 24.2
platformdirs 3.10.0
plotnine 0.12.4
progressbar2 4.5.0
prompt-toolkit 3.0.43
proto-plus 1.24.0
protobuf 4.25.5
psutil 5.9.0
ptyprocess 0.7.0
pure-eval 0.2.2
pyasn1 0.6.1
pyasn1_modules 0.4.1
pyct 0.5.0
pydantic 1.10.18
pydot 3.0.1
pygam 0.9.1
Pygments 2.15.1
pyliger 0.2.0
pynndescent 0.5.13
pyparsing 3.1.4
python-dateutil 2.9.0.post0
python-igraph 0.11.6
python-utils 3.8.2
pytz 2024.2
pyviz_comms 3.0.3
PyWavelets 1.4.1
PyYAML 6.0.2
pyzmq 25.1.2
requests 2.32.3
requests-oauthlib 2.0.0
rich 13.8.1
rsa 4.9
scanpy 1.9.8
scikit-image 0.21.0
scikit-learn 1.3.2
scipy 1.10.1
seaborn 0.13.2
session-info 1.0.0
setuptools 75.1.0
six 1.16.0
slicerator 1.1.0
spatial-factorization 0.0.1
squidpy 1.2.2
stack-data 0.2.0
statsmodels 0.14.1
stdlib-list 0.10.0
sympy 1.13.3
tensorboard 2.13.0
tensorboard-data-server 0.7.2
tensorflow 2.13.1
tensorflow-estimator 2.13.0
tensorflow-io-gcs-filesystem 0.34.0
tensorflow-probability 0.21.0
termcolor 2.4.0
texttable 1.7.0
threadpoolctl 3.5.0
tifffile 2023.7.10
tomli 2.0.1
toolz 0.12.1
torch 2.1.2
tornado 6.4.1
tqdm 4.66.5
traitlets 5.14.3
triton 2.1.0
typing 3.7.4.3
typing_extensions 4.5.0
tzdata 2024.2
uc-micro-py 1.0.3
umap-learn 0.5.6
urllib3 2.2.3
validators 0.34.0
wcwidth 0.2.5
webencodings 0.5.1
Werkzeug 3.0.4
wheel 0.44.0
wrapt 1.16.0
xarray 2023.1.0
xgboost 2.1.1
XlsxWriter 3.2.0
xyzservices 2024.9.0
yarl 1.12.1
zarr 2.16.1
zipp 3.17.0
Thanks and best wishes
The text was updated successfully, but these errors were encountered: