You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, when I run the tutorials of flowsig 'mouse_embryo_stereoseq_example.ipynb' with default parameters and python 3.8 environment, I have the following bug:
0001 numerical instability (try 9)
0000 learning rate: 1.95e-05
W0000 00:00:1732718987.791411 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 0. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791489 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 1. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791505 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 2. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791537 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 3. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791554 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 4. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791567 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 5. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791657 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 6. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791672 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 7. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791691 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 8. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791718 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 9. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791733 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 10. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791758 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 11. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791794 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 12. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791805 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 13. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791816 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 14. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791827 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 15. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791849 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 16. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791863 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 17. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791893 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 18. The input might not be valid. Filling lower-triangular output with NaNs.
W0000 00:00:1732718987.791908 18995 cholesky_op_gpu.cu.cc:205] Cholesky decomposition was not successful for batch 19. The input might not be valid. Filling lower-triangular output with NaNs.
---------------------------------------------------------------------------
NumericalDivergenceError Traceback (most recent call last)
Cell In[36], line 1
----> 1 fs.pp.construct_gems_using_nsf(adata,
2 n_gems=20,
3 layer_key='count',
4 length_scale=5.0
5 )
9 # fs.pp.construct_gems_using_nmf(adata,
10 # n_gems = 20,
11 # layer_key = 'count',
12 # random_state =0,
13 # max_iter=20)
15 commot_output_key = 'commot-cellchat'
File [~/shared/JunyaYang/flowsigenv/lib/python3.11/site-packages/flowsig/preprocessing/_gem_construction.py:88](https://hub.cpu.epti.moe/user/s230026188/Bioinfo-Project/lab/tree/shared/JunyaYang/Bioinfo-Project/shared/JunyaYang/flowsigenv/lib/python3.11/site-packages/flowsig/preprocessing/_gem_construction.py#line=87), in construct_gems_using_nsf(adata, n_gems, layer_key, spatial_key, n_inducing_pts, length_scale)
86 fit.init_loadings(D["Y"], X=Xtr, sz=D["sz"], shrinkage=0.3)
87 tro = sf.ModelTrainer(fit)
---> 88 tro.train_model(*Dtf, status_freq=50) #about 3 mins
90 insf = interpret_nsf(fit,Xtr,S=100,lda_mode=False)
92 adata.uns['nsf_info'] = insf
File [~/shared/JunyaYang/flowsigenv/lib/python3.11/site-packages/spatial_factorization/training.py:310](https://hub.cpu.epti.moe/user/s230026188/Bioinfo-Project/lab/tree/shared/JunyaYang/Bioinfo-Project/shared/JunyaYang/flowsigenv/lib/python3.11/site-packages/spatial_factorization/training.py#line=309), in ModelTrainer.train_model(self, lr_reduce, maxtry, verbose, ckpt_freq, *args, **kwargs)
308 except (tf.errors.InvalidArgumentError,NumericalDivergenceError) as err: #cholesky failure
309 tries+=1
--> 310 if tries==maxtry: raise err
311 #else: #not yet reached the maximum number of tries
312 if verbose:
File [~/shared/JunyaYang/flowsigenv/lib/python3.11/site-packages/spatial_factorization/training.py:304](https://hub.cpu.epti.moe/user/s230026188/Bioinfo-Project/lab/tree/shared/JunyaYang/Bioinfo-Project/shared/JunyaYang/flowsigenv/lib/python3.11/site-packages/spatial_factorization/training.py#line=303), in ModelTrainer.train_model(self, lr_reduce, maxtry, verbose, ckpt_freq, *args, **kwargs)
302 while tries < maxtry:
303 try:
--> 304 self._train_model_fixed_lr(mgr, *args, ptic=ptic, wtic=wtic,
305 verbose=verbose, ckpt_freq=ckpt_freq,
306 **kwargs)
307 if self.epoch>=len(self.loss["train"])-1: break #finished training
308 except (tf.errors.InvalidArgumentError,NumericalDivergenceError) as err: #cholesky failure
File [~/shared/JunyaYang/flowsigenv/lib/python3.11/site-packages/spatial_factorization/training.py:232](https://hub.cpu.epti.moe/user/s230026188/Bioinfo-Project/lab/tree/shared/JunyaYang/Bioinfo-Project/shared/JunyaYang/flowsigenv/lib/python3.11/site-packages/spatial_factorization/training.py#line=231), in ModelTrainer._train_model_fixed_lr(self, ckpt_mgr, Dtrain, Ntr, Dval, S, verbose, num_epochs, ptic, wtic, ckpt_freq, kernel_hp_update_freq, status_freq, span, tol, pickle_freq)
230 self.loss["train"][i] = trl
231 if not np.isfinite(trl) or trl>self.loss["train"][1]:
--> 232 raise NumericalDivergenceError
233 if i%status_freq==0 or i==num_epochs:
234 if Dval:
NumericalDivergenceError:
And I have tried different version of python and tensorflow
Sorry that you have this error. I've noticed that NSF has been tricky for most users and I don't have good answers for why it sometimes fails. Do you mind telling me what machine you are trying to run FlowSig on?
I will take a closer look at the packages you have installed and see where the differences are with my own environment for FlowSig and see if that reveals anything.
Thank you for your quick response and for looking into this! I’m running FlowSig on the following machine:
Linux 228461c49223 5.15.0-125-generic #135-Ubuntu SMP Fri Sep 27 13:53:58 UTC 2024 x86_64 x86_64 x86_64 GNU/Linux
Let me know if you need more details about the environment. I really appreciate you taking the time to compare the packages between our setups—hopefully, that will help pinpoint the issue. Please let me know if there’s anything else I can provide to assist with troubleshooting.
Hi, when I run the tutorials of flowsig 'mouse_embryo_stereoseq_example.ipynb' with default parameters and python 3.8 environment, I have the following bug:
And I have tried different version of python and tensorflow
My environment is :
Package Version
absl-py 2.1.0
adjustText 1.2.0
aiobotocore 2.5.4
aiohappyeyeballs 2.4.3
aiohttp 3.10.11
aioitertools 0.12.0
aiosignal 1.3.1
anndata 0.10.9
annotated-types 0.7.0
annoy 1.17.3
anyio 4.6.0
argon2-cffi 23.1.0
argon2-cffi-bindings 21.2.0
array_api_compat 1.8
arrow 1.3.0
asciitree 0.3.3
asttokens 2.4.1
astunparse 1.6.3
async-lru 2.0.4
attrs 24.2.0
babel 2.16.0
beautifulsoup4 4.12.3
biothings-client 0.3.1
bleach 6.1.0
bokeh 3.6.0
botocore 1.31.17
cachetools 5.5.0
causaldag 0.1a163
certifi 2024.8.30
cffi 1.17.1
charset-normalizer 3.3.2
click 8.1.7
cloudpickle 3.0.0
colorcet 3.1.0
comm 0.2.2
conditional-independence 0.1a6
contourpy 1.3.0
cycler 0.12.1
dask 2024.11.2
dask-expr 1.1.19
dask-image 2024.5.3
dataclasses 0.6
datashader 0.16.3
debugpy 1.8.7
decorator 5.1.1
defusedxml 0.7.1
dill 0.3.9
distributed 2024.11.2
dm-tree 0.1.8
docopt 0.6.2
docrep 0.3.2
einops 0.8.0
et-xmlfile 1.1.0
executing 2.1.0
fasteners 0.19
fastjsonschema 2.20.0
filelock 3.16.1
flatbuffers 24.3.25
flowsig 0.1.2
fonttools 4.54.1
fqdn 1.5.1
frozendict 2.4.4
frozenlist 1.4.1
fsspec 2023.6.0
ftpretty 0.4.0
gast 0.6.0
geopandas 1.0.1
goatools 1.4.12
google-ai-generativelanguage 0.6.10
google-api-core 2.22.0
google-api-python-client 2.151.0
google-auth 2.35.0
google-auth-httplib2 0.2.0
google-generativeai 0.8.2
google-pasta 0.2.0
googleapis-common-protos 1.65.0
graphical-model-learning 0.1a8
graphical-models 0.1a21
grpcio 1.68.0
grpcio-status 1.68.0
h11 0.14.0
h5py 3.12.1
h5sparse 0.1.0
holoviews 1.20.0
httpcore 1.0.7
httplib2 0.22.0
httpx 0.27.2
idna 3.10
igraph 0.11.6
imageio 2.35.1
importlib_metadata 8.5.0
inflect 7.4.0
ipdb 0.13.13
ipykernel 6.29.5
ipython 8.27.0
ipywidgets 8.1.5
isoduration 20.11.0
jedi 0.19.1
Jinja2 3.1.4
jmespath 1.0.1
joblib 1.4.2
json5 0.9.25
jsonpointer 3.0.0
jsonschema 4.23.0
jsonschema-specifications 2023.12.1
jupyter 1.1.1
jupyter_client 8.6.3
jupyter-console 6.6.3
jupyter_core 5.7.2
jupyter-events 0.10.0
jupyter-lsp 2.2.5
jupyter_server 2.14.2
jupyter_server_terminals 0.5.3
jupyterlab 4.2.5
jupyterlab_pygments 0.3.0
jupyterlab_server 2.27.3
jupyterlab_widgets 3.0.13
keras 3.5.0
kiwisolver 1.4.7
lazy_loader 0.4
legacy-api-wrap 1.4
leidenalg 0.10.2
libclang 18.1.1
linkify-it-py 2.0.3
llvmlite 0.43.0
locket 1.0.0
louvain 0.8.2
Markdown 3.7
markdown-it-py 3.0.0
MarkupSafe 2.1.5
matplotlib 3.9.2
matplotlib-inline 0.1.7
matplotlib-scalebar 0.8.1
mdit-py-plugins 0.4.2
mdurl 0.1.2
mistune 3.0.2
mizani 0.11.4
ml-dtypes 0.4.1
more-itertools 10.5.0
mpmath 1.3.0
msgpack 1.1.0
multidict 6.1.0
multipledispatch 1.0.0
multiscale_spatial_image 1.0.1
mygene 3.2.2
namex 0.0.8
natsort 8.4.0
nbclient 0.10.0
nbconvert 7.16.4
nbformat 5.10.4
nest-asyncio 1.6.0
networkx 3.3
notebook 7.2.2
notebook_shim 0.2.4
numba 0.60.0
numcodecs 0.13.0
numexpr 2.10.1
numpy 1.26.4
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu12 9.1.0.70
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu12 12.1.0.106
nvidia-nccl-cu12 2.20.5
nvidia-nvjitlink-cu12 12.6.85
nvidia-nvtx-cu12 12.1.105
ome-zarr 0.9.0
omnipath 1.0.8
openpyxl 3.1.5
opt_einsum 3.4.0
optree 0.12.1
overrides 7.7.0
packaging 24.1
pandas 2.2.3
pandocfilters 1.5.1
panel 1.5.4
param 2.1.1
parso 0.8.4
partd 1.4.2
patsy 0.5.6
pexpect 4.9.0
pgmpy 0.1.26
pillow 10.4.0
PIMS 0.7
pip 24.2
platformdirs 4.3.6
plotnine 0.13.6
pooch 1.8.2
progressbar2 4.5.0
prometheus_client 0.21.0
prompt_toolkit 3.0.48
proto-plus 1.24.0
protobuf 5.28.3
psutil 6.0.0
ptyprocess 0.7.0
pure_eval 0.2.3
pyarrow 17.0.0
pyasn1 0.6.1
pyasn1_modules 0.4.1
pycparser 2.22
pyct 0.5.0
pydantic 2.9.2
pydantic_core 2.23.4
pydot 3.0.2
pygam 0.9.1
Pygments 2.18.0
pyliger 0.2.3
pynndescent 0.5.13
pyogrio 0.10.0
pyparsing 3.2.0
pyproj 3.7.0
python-dateutil 2.9.0.post0
python-igraph 0.11.6
python-json-logger 2.0.7
python-utils 3.9.0
pytz 2024.2
pyviz_comms 3.0.3
PyYAML 6.0.2
pyzmq 26.2.0
referencing 0.35.1
requests 2.32.3
rfc3339-validator 0.1.4
rfc3986-validator 0.1.1
rich 13.9.4
rpds-py 0.20.0
rsa 4.9
s3fs 2023.6.0
scanpy 1.10.3
scikit-image 0.24.0
scikit-learn 1.5.2
scipy 1.11.4
seaborn 0.13.2
Send2Trash 1.8.3
session_info 1.0.0
setuptools 75.1.0
shapely 2.0.6
six 1.16.0
slicerator 1.1.0
sniffio 1.3.1
sortedcontainers 2.4.0
soupsieve 2.6
spatial_factorization 0.0.1
spatial_image 1.1.0
spatialdata 0.2.3
squidpy 1.6.1
stack-data 0.6.3
statsmodels 0.14.3
stdlib-list 0.10.0
sympy 1.13.3
tblib 3.0.0
tensorboard 2.18.0
tensorboard-data-server 0.7.2
tensorflow 2.18.0
tensorflow-io-gcs-filesystem 0.37.1
tensorflow-probability 0.24.0
termcolor 2.4.0
terminado 0.18.1
texttable 1.7.0
tf_keras 2.18.0
threadpoolctl 3.5.0
tifffile 2024.9.20
tinycss2 1.3.0
toolz 1.0.0
torch 2.4.1
tornado 6.4.1
tqdm 4.66.5
traitlets 5.14.3
triton 3.0.0
typeguard 4.3.0
types-python-dateutil 2.9.0.20240906
typing 3.7.4.3
typing_extensions 4.12.2
tzdata 2024.2
uc-micro-py 1.0.3
umap-learn 0.5.6
uri-template 1.3.0
uritemplate 4.1.1
urllib3 1.26.20
validators 0.34.0
wcwidth 0.2.13
webcolors 24.8.0
webencodings 0.5.1
websocket-client 1.8.0
Werkzeug 3.0.4
wheel 0.44.0
widgetsnbextension 4.0.13
wrapt 1.16.0
xarray 2024.9.0
xarray-dataclasses 1.8.0
xarray-datatree 0.0.14
xarray-schema 0.0.3
xarray-spatial 0.4.0
xgboost 2.1.1
XlsxWriter 3.2.0
xyzservices 2024.9.0
yarl 1.13.1
zarr 2.18.3
zict 3.0.0
zipp 3.20.2
The text was updated successfully, but these errors were encountered: