-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
20 changed files
with
7,226 additions
and
36 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
|
||
library(tidyverse) | ||
source("R/DataUtils.R") | ||
source("R/CalcHospDeaths.R") | ||
|
||
|
||
|
||
|
||
# PROBABILITIES ----------------------------------------------------------- | ||
|
||
# Probs | ||
p_death <- c(.001, .0025, .01) | ||
p_hosp <- p_death*10 | ||
|
||
|
||
|
||
# TIME TO EVENTS ---------------------------------------------------------- | ||
|
||
# Time to Hospitalization | ||
time_hosp_pars <- c(1.23, 0.79) | ||
plot(density(rlnorm(1000, meanlog=time_hosp_pars[1], sdlog=time_hosp_pars[2])), main="Time to Hospitalization") | ||
qlnorm(c(.025, .5, .975), time_hosp_pars[1], time_hosp_pars[2]) | ||
mean(rlnorm(1000, meanlog=time_hosp_pars[1], sdlog=time_hosp_pars[2])) | ||
|
||
# Time to Discharge | ||
time_disch_pars <- c(log(11.5), log(1.22)) | ||
plot(density(rlnorm(1000, meanlog=time_disch_pars[1], sdlog=time_disch_pars[2])), main="Time to Discharge") | ||
qlnorm(c(.025, .5, .975), time_disch_pars[1], time_disch_pars[2]) | ||
mean(rlnorm(1000, meanlog=time_disch_pars[1], sdlog=time_disch_pars[2])) | ||
|
||
# Time to Death | ||
time_death_pars <- c(log(11.25), log(1.15)) | ||
plot(density(rlnorm(1000, meanlog=time_death_pars[1], sdlog=time_death_pars[2])), main="Time to Death") | ||
qlnorm(c(.025, .5, .975), time_death_pars[1], time_death_pars[2]) | ||
mean(rlnorm(1000, meanlog=time_death_pars[1], sdlog=time_death_pars[2])) | ||
|
||
# 11.2 / 25 | ||
# time_death_pars <- c(25, ) | ||
# plot(density(rgamma(1000, shape=time_death_pars[1], scale=time_death_pars[2])), main="Time to Death") | ||
# qgamma(c(.025, .5, .975), shape=time_death_pars[1], scale=time_death_pars[2]) | ||
# mean(rgamma(1000, shape=time_death_pars[1], scale=time_death_pars[2])) | ||
|
||
|
||
|
||
# SAN FRAN ---------------------------------------------------------------- | ||
|
||
|
||
|
||
# SAN FRANCISCO RESULTS - LOW --------------------------------------------------- | ||
|
||
sims_data <- load_scenario_sims(scenario_dir="SanFrancisco/low") %>% | ||
mutate(time=parse_date(time)) %>% | ||
mutate(comp=recode(comp, R="I3", cumI="R", diffI="cumI", `7.0`="diffI")) | ||
incid_data <- sims_data %>% filter(comp=="diffI") %>% rename(incidI=N) | ||
|
||
|
||
# Get San Fran - low - low hosp/mortality | ||
sim_hospdeath_lowlow <- build_hospdeath_fullsim(incid_data, p_hosp=(p_death[1]*10), p_death=p_death[1], time_hosp_pars, time_death_pars, time_disch_pars) | ||
|
||
# Get San Fran - low - mid hosp/mortality | ||
sim_hospdeath_lowmid <- build_hospdeath_fullsim(incid_data, p_hosp=(p_death[2]*10), p_death=p_death[2], time_hosp_pars, time_death_pars, time_disch_pars) | ||
|
||
# Get San Fran - low - high hosp/mortality | ||
sim_hospdeath_lowhigh <- build_hospdeath_fullsim(incid_data, p_hosp=(p_death[3]*10), p_death=p_death[3], time_hosp_pars, time_death_pars, time_disch_pars) | ||
|
||
sanfran_hosp_low <- bind_rows(sim_hospdeath_lowlow %>% mutate(p_death=p_death[1], scenario="B"), | ||
sim_hospdeath_lowmid %>% mutate(p_death=p_death[2], scenario="B"), | ||
sim_hospdeath_lowhigh %>% mutate(p_death=p_death[3], scenario="B")) | ||
dir.create("model_output/SanFrancisco/hosp_death") | ||
|
||
write_csv(sim_hospdeath_lowhigh, file.path("model_output/SanFrancisco/hosp_death","scenario_B_high.csv")) | ||
write_csv(sim_hospdeath_lowlow, file.path("model_output/SanFrancisco/hosp_death","scenario_B_low.csv")) | ||
write_csv(sim_hospdeath_lowmid, file.path("model_output/SanFrancisco/hosp_death","scenario_B_mid.csv")) | ||
|
||
|
||
|
||
# SAN FRANCISCO RESULTS - MID --------------------------------------------------- | ||
|
||
sims_data <- load_scenario_sims(scenario_dir="SanFrancisco/mid") %>% | ||
mutate(time=parse_date(time)) %>% | ||
mutate(comp=recode(comp, R="I3", cumI="R", diffI="cumI", `7.0`="diffI")) | ||
incid_data <- sims_data %>% filter(comp=="diffI") %>% rename(incidI=N) | ||
|
||
# Get San Fran - mid - low hosp/mortality | ||
sim_hospdeath_midlow <- build_hospdeath_fullsim(incid_data, p_hosp=(p_death[1]*10), p_death=p_death[1], time_hosp_pars, time_death_pars, time_disch_pars) | ||
|
||
# Get San Fran - mid - mid hosp/mortality | ||
sim_hospdeath_midmid <- build_hospdeath_fullsim(incid_data, p_hosp=(p_death[2]*10), p_death=p_death[2], time_hosp_pars, time_death_pars, time_disch_pars) | ||
|
||
# Get San Fran - mid - high hosp/mortality | ||
sim_hospdeath_midhigh <- build_hospdeath_fullsim(incid_data, p_hosp=(p_death[3]*10), p_death=p_death[3], time_hosp_pars, time_death_pars, time_disch_pars) | ||
|
||
|
||
sanfran_hosp_mid <- bind_rows(sim_hospdeath_midlow %>% mutate(p_death=p_death[1], scenario="A"), | ||
sim_hospdeath_midmid %>% mutate(p_death=p_death[2], scenario="A"), | ||
sim_hospdeath_midhigh %>% mutate(p_death=p_death[3], scenario="A")) | ||
|
||
write_csv(sim_hospdeath_midhigh, file.path("model_output/SanFrancisco/hosp_death","scenario_A_high.csv")) | ||
write_csv(sim_hospdeath_midlow, file.path("model_output/SanFrancisco/hosp_death","scenario_A_low.csv")) | ||
write_csv(sim_hospdeath_midmid, file.path("model_output/SanFrancisco/hosp_death","scenario_A_mid.csv")) | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
|
||
|
||
|
||
# SETUP ------------------------------------------------------------------- | ||
|
||
##' | ||
library(tidyverse) | ||
source("R/DataUtils.R") | ||
source("R/CalcHospDeaths.R") | ||
#source("R/Run_CalcHospDeaths.R") # dont need this unless re-running the model | ||
|
||
# Probs | ||
p_death <- c(.001, .0025, .01) | ||
p_hosp <- p_death*10 | ||
|
||
|
||
##' define metropolitan areas | ||
##' | ||
get_metro_labels <- function(data = sanfran_hosp_low){ | ||
LA <- c('06037', '06059', '06065', '06071', '06111') | ||
SF <- c('06001', '06013', '06075', '06081', '06041', '06085', '06069', | ||
'06077', '06099', '06095', '06097', '06087', '06047', '06055') | ||
SD <- c('06073') | ||
FN <- c('06019','06031','06039') | ||
SC <- c('06067', '06061', '06113', '06017', '06101', '06115', '06057') | ||
RD <- c('06089', '06103') | ||
|
||
data$county <- paste0("0",data$county) | ||
data$new_metrop <- 0 | ||
data$new_metrop[data$county %in% LA] <- "LA" | ||
data$new_metrop[data$county %in% SF] <- "SF" | ||
data$new_metrop[data$county %in% SD] <- "SD" | ||
data$new_metrop[data$county %in% FN] <- "FN" | ||
data$new_metrop[data$county %in% SC] <- "SC" | ||
data$new_metrop[data$county %in% RD] <- "RD" | ||
|
||
##Update the labels | ||
data$metrop_labels <- NA | ||
data$metrop_labels[data$new_metrop=="LA"] <- "Los Angeles" | ||
data$metrop_labels[data$new_metrop=="SF"] <- "San Francisco" | ||
data$metrop_labels[data$new_metrop=="SD"] <- "San Diego" | ||
data$metrop_labels[data$new_metrop=="FN"] <- "Fresno" | ||
data$metrop_labels[data$new_metrop=="SC"] <- "Sacremento" | ||
data$metrop_labels[data$new_metrop=="RD"] <- "Redding" | ||
data$metrop_labels <- as.factor(data$metrop_labels) | ||
|
||
return(data) | ||
} | ||
|
||
|
||
|
||
|
||
summ_hosp_death_table <- function(df = sanfran_hosp_low, end_date="2020-04-01"){ | ||
# Hospitalization - by location | ||
df_summ_H <- df %>% filter(time <= as.Date(end_date)) %>% | ||
group_by(sim_num, p_death, metrop_labels) %>% | ||
summarize(hosp = sum(incidH)) %>% | ||
group_by(p_death, metrop_labels) %>% | ||
summarize(mean=mean(hosp), | ||
pi_low=quantile(hosp, probs=0.2), | ||
pi_high=quantile(hosp, probs=0.8)) | ||
|
||
dat <- df_summ_H %>% mutate(estH = paste0(round(mean,1), " (", round(pi_low,1),"-",round(pi_high,1),")")) %>% | ||
mutate(metrop_labels = factor(metrop_labels, levels=c( "San Francisco", | ||
"Sacremento", | ||
"Fresno", | ||
"Los Angeles", | ||
"San Diego", | ||
"Redding"), ordered = TRUE)) %>% arrange(p_death, metrop_labels) | ||
locs_ <- dat %>% select(-(mean:pi_high)) %>% spread(key=p_death, value=estH) | ||
|
||
|
||
# Hospitalization - All locations | ||
df_summ_H <- df %>% filter(time <= as.Date(end_date)) %>% | ||
group_by(sim_num, p_death) %>% | ||
summarize(hosp = sum(incidH)) %>% | ||
group_by(p_death) %>% | ||
summarize(mean=mean(hosp), pi_low=quantile(hosp, probs=0.2), pi_high=quantile(hosp, probs=0.8)) | ||
all_ <- df_summ_H %>% mutate(estH = paste0(round(mean,1), " (", round(pi_low,1),"-",round(pi_high,1),")")) %>% | ||
mutate(metrop_labels = "All Locations") %>% select(-(mean:pi_high)) %>% spread(key=p_death, value=estH) | ||
|
||
# Final table | ||
tab_H <- bind_rows(all_, locs_) | ||
|
||
labs <- c(" ",rep("Hospitalizations", 3)) | ||
names(labs) <- c("metrop_labels", "0.001", "0.0025", "0.01") | ||
tab_H <- bind_rows(labs, tab_H) | ||
|
||
|
||
# ~ Deaths - Low ---------------------------------------------------------- | ||
|
||
# Deaths - by location | ||
df_summ_D <- df %>% filter(time <= as.Date(end_date)) %>% | ||
group_by(sim_num, p_death, metrop_labels) %>% | ||
summarize(death = sum(incidD)) %>% | ||
group_by(p_death, metrop_labels) %>% | ||
summarize(mean=mean(death), pi_low=quantile(death, probs=0.2), pi_high=quantile(death, probs=0.8)) | ||
|
||
dat <- df_summ_D %>% mutate(estD = paste0(round(mean,1), " (", round(pi_low,1),"-",round(pi_high,1),")")) %>% | ||
mutate(metrop_labels = factor(metrop_labels, levels=c( "San Francisco", | ||
"Sacremento", | ||
"Fresno", | ||
"Los Angeles", | ||
"San Diego", | ||
"Redding"), ordered = TRUE)) %>% arrange(p_death, metrop_labels) | ||
locs_ <- dat %>% select(-(mean:pi_high)) %>% spread(key=p_death, value=estD) | ||
|
||
|
||
# Deaths - by location | ||
df_summ_D <- df %>% filter(time <= as.Date(end_date)) %>% | ||
group_by(sim_num, p_death) %>% | ||
summarize(death = sum(incidD)) %>% | ||
group_by(p_death) %>% | ||
summarize(mean=mean(death), pi_low=quantile(death, probs=0.2), pi_high=quantile(death, probs=0.8)) | ||
all_ <- df_summ_D %>% mutate(estD = paste0(round(mean,1), " (", round(pi_low,1),"-",round(pi_high,1),")")) %>% | ||
mutate(metrop_labels = "All Locations") %>% select(-(mean:pi_high)) %>% spread(key=p_death, value=estD) | ||
|
||
# Final table | ||
tab_D <- bind_rows(all_, locs_) | ||
|
||
labs <- c(" ",rep("Deaths", 3)) | ||
names(labs) <- c("metrop_labels", "0.001", "0.0025", "0.01") | ||
tab_D <- bind_rows(labs, tab_D) | ||
|
||
# combine for final table | ||
tab_res <- bind_cols(tab_H, tab_D[,-1]) | ||
tab_res <- tab_res[, c(1,2,5,3,6,4,7)] | ||
|
||
return(tab_res) | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# DATA -------------------------------------------------------------------- | ||
|
||
# ~ MID scenario | ||
sim_hospdeath_midhigh <- read_csv(file.path("model_output/SanFrancisco/hosp_death","scenario_A_high.csv")) | ||
sim_hospdeath_midmid <- read_csv(file.path("model_output/SanFrancisco/hosp_death","scenario_A_mid.csv")) | ||
sim_hospdeath_midlow <- read_csv(file.path("model_output/SanFrancisco/hosp_death","scenario_A_low.csv")) | ||
|
||
sanfran_hosp_mid <- bind_rows(sim_hospdeath_midlow %>% mutate(p_death=p_death[1], scenario="A"), | ||
sim_hospdeath_midmid %>% mutate(p_death=p_death[2], scenario="A"), | ||
sim_hospdeath_midhigh %>% mutate(p_death=p_death[3], scenario="A")) | ||
|
||
# ~ LOW scenario | ||
sim_hospdeath_lowhigh <- read_csv(file.path("model_output/SanFrancisco/hosp_death","scenario_B_high.csv")) | ||
sim_hospdeath_lowmid <- read_csv(file.path("model_output/SanFrancisco/hosp_death","scenario_B_mid.csv")) | ||
sim_hospdeath_lowlow <- read_csv(file.path("model_output/SanFrancisco/hosp_death","scenario_B_low.csv")) | ||
|
||
sanfran_hosp_low <- bind_rows(sim_hospdeath_lowlow %>% mutate(p_death=p_death[1], scenario="B"), | ||
sim_hospdeath_lowmid %>% mutate(p_death=p_death[2], scenario="B"), | ||
sim_hospdeath_lowhigh %>% mutate(p_death=p_death[3], scenario="B")) | ||
|
||
# ~ Assign metro areas | ||
sanfran_hosp_low <- get_metro_labels(data = sanfran_hosp_low) | ||
sanfran_hosp_mid <- get_metro_labels(data = sanfran_hosp_mid) | ||
|
||
|
||
|
||
|
||
|
||
|
||
# SUMMARIZE SCENARIOS -------------------------------------------------- | ||
|
||
|
||
# ~ Hospitalization/Death - LOW ------------------------------------------------- | ||
|
||
summ_hosp_death_table(df = sanfran_hosp_low, end_date="2020-04-01") | ||
|
||
|
||
# ~ Hospitalization/Death - MID ------------------------------------------------- | ||
|
||
summ_hosp_death_table(df = sanfran_hosp_mid, end_date="2020-04-01") | ||
|
||
|
||
|
||
|
Oops, something went wrong.