Skip to content

machine-learning + Web API project : to predict the estimated value of apartments in the city of GwangMyung, Korea.

Notifications You must be signed in to change notification settings

comsa33/ML-WebAPI-apartment_price_prediction_program

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[ML] 집값 예측 인공지능 웹 API - 얼마요

https://my-apt.herokuapp.com/

  • 랜덤포레스트 regressor를 사용한 예측 모델을 기반으로한 웹앱 서비스

introduction

This is Machine-learning Web API project for prediction of the value of apartments in Gwangmyung-si, Korea.

introduction

Environment & Skills

  • MacOS
  • Whale / Chrome Browser
  • Python 3.8
    • Library for WebScraping : requests, APScheduler
    • Library for EDA & Data Preprocessing : Pandas, Numpy
    • Library for Data Visualization : Matplotlib, Plotly, Folium
    • Library for ML Models : sklearn, xgboost, lightgbm
  • Flask, HTML, CSS
  • Heroku
  • Metabase
  • ML MODELS
    • Tree-based-Models : RandomForest Regressor, Xgboost Regressor, Lightgbm Regressor
    • TransformedTargetRegressor : Log Transformed Linear Regression
  • Miri Canvas
  • OBS

pipeline

image

Data

광명시 공공 데이터 open api

  • 광명시 아파트 실거래 공공데이터 request => MongoDB에 JSON형태로 적재 => SQLite3에 RDB형태로 변환 후 python api로 연동 => Pandas로 데이터프레임 형태로 불러오기 openapi mongodb

Evaluation

MODELS MAE RMSE R2_SCORE
LinearRegression 174718437.51 KRW 238319972.99 KRW 0.08
ElasticNetCV 274784163.17 KRW 360266710.18 KRW -1.1
RandomForestRegressor 63981882.48 KRW 113676925.82 KRW 0.9
XGB Regressor 149348580.28 KRW 180378806.28 KRW 0.47
LGBM Regressor 154223908.87 KRW 186687372.47 KRW 0.44

About

machine-learning + Web API project : to predict the estimated value of apartments in the city of GwangMyung, Korea.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages