- 랜덤포레스트 regressor를 사용한 예측 모델을 기반으로한 웹앱 서비스
This is Machine-learning Web API project for prediction of the value of apartments in Gwangmyung-si, Korea.
- MacOS
- Whale / Chrome Browser
- Python 3.8
- Library for WebScraping : requests, APScheduler
- Library for EDA & Data Preprocessing : Pandas, Numpy
- Library for Data Visualization : Matplotlib, Plotly, Folium
- Library for ML Models : sklearn, xgboost, lightgbm
- Flask, HTML, CSS
- Heroku
- Metabase
- ML MODELS
- Tree-based-Models : RandomForest Regressor, Xgboost Regressor, Lightgbm Regressor
- TransformedTargetRegressor : Log Transformed Linear Regression
- Miri Canvas
- OBS
광명시 공공 데이터 open api
MODELS | MAE | RMSE | R2_SCORE |
---|---|---|---|
LinearRegression | 174718437.51 KRW | 238319972.99 KRW | 0.08 |
ElasticNetCV | 274784163.17 KRW | 360266710.18 KRW | -1.1 |
RandomForestRegressor | 63981882.48 KRW | 113676925.82 KRW | 0.9 |
XGB Regressor | 149348580.28 KRW | 180378806.28 KRW | 0.47 |
LGBM Regressor | 154223908.87 KRW | 186687372.47 KRW | 0.44 |